[1] Si, S., Li, S., Ming, Z. and Jin, L. (2010) Humidity Sensors Based on ZnO Colloidal Nanocrystal Clusters. Chemical Physics Letters, 493, 288-291. http://dx.doi.org/10.1016/j.cplett.2010.05.013
[2] Zhang, Y., Yu, K., Jiang, D., Zhu, Z., Geng, H. and Luo, L. (2005) Zinc Oxide Nanorod and Nanowire for Humidity Sensor. Applied Surface Science, 242, 212-217.
http://dx.doi.org/10.1016/j.apsusc.2004.08.013
[3] Yamazoe, N. and Shimizu, Y. (1986) Humidity Sensors: Principles and Applications. Sensors and Actuators, 10, 379-398. http://dx.doi.org/10.1016/0250-6874(86)80055-5
[4] Erol, A., Okur, S., Comba, B., Mermer, O. and Arikan, M. (2010) Humidity Sensing Properties of ZnO Nanoparticles Synthesized by Sol-Gel Process. Sensors and Actuators B: Chemical, 145, 174-180.
http://dx.doi.org/10.1016/j.snb.2009.11.051
[5] Su, P.-G. and Chang, Y.-P. (2008) Low-Humidity Sensor Based on a Quartz-Crystal Microbalance Coated with Polypyrole/Ag/TiO2 Nanoparticles Composite Thin Films. Sensors and Actuators B: Chemical, 129, 915-920. http://dx.doi.org/10.1016/j.snb.2007.10.006
[6] Zheng, S., Zhu, Y. and Krishnaswamy, S. (2011) Nanofilm-Coated Long-Period Fiber Grating Humidity Sensors for Corrosion Detection in Structural Health Monitoring. SPIE Proceedings, 7983, 79831A-79831A-9. http://dx.doi.org/10.1117/12.880478
[7] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.
http://dx.doi.org/10.1126/science.1102896
[8] Geim, A.K. and Novoselov, K.S. (2007) The Rise of Graphene. Nature Materials, 6, 183-191.
http://dx.doi.org/10.1038/nmat1849
[9] Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I. and Novoselov, K.S. (2007) Detection of Individual Gas Molecules Adsorbed on Graphene. Nature Materials, 6, 652-655.
http://dx.doi.org/10.1038/nmat1967
[10] Lu, G., Ocola, L.E. and Chen, J. (2009) Reduced Graphene Oxide for Room-Temperature Gas Sensors. Nanotechnology, 20, 445502. http://dx.doi.org/10.1088/0957-4484/20/44/445502
[11] Lu, G., Ocola, L.E. and Chen, J. (2009) Gas Detection Using Low-Temperature Reduced Graphene Oxide Sheets. Applied Physics Letters, 94, Article ID: 083111. http://dx.doi.org/10.1063/1.3086896
[12] Lange, U., Hirsch, T., Mirsky, V.M. and Wolfbeis, O.S. (2011) Hydrogen Sensor Based on a Graphene-Palladium Nanocomposite. Electrochimica Acta, 56, 3707-3712.
http://dx.doi.org/10.1016/j.electacta.2010.10.078
[13] Nomani, M., Shishir, R., Qazi, M., Diwan, D., Shields, V., Spencer, M., Tompa, G.S., Sbrockey, N.M. and Koley, G. (2010) Highly Sensitive and Selective Detection of NO2 Using Epitaxial Graphene on 6H-SiC. Sensors and Actuators B: Chemical, 150, 301-307. http://dx.doi.org/10.1016/j.snb.2010.06.069
[14] Jeong, H.Y., Lee, D.-S., Choi, H.K., Lee, D.H., Kim, J.-E., Lee, J.Y., Lee, W.J., Kim, S.O. and Choi, S.-Y. (2010) Flexible Room-Temperature NO2 Gas Sensors Based on Carbon Nanotubes/Reduced Graphene Hybrid Films. Applied Physics Letters, 96, Article ID: 213105. http://dx.doi.org/10.1063/1.3432446
[15] Yoon, H.J., Jun, D.H., Yang, J.H., Zhou, Z., Yang, S.S. and Cheng, M.M.C. (2011) Carbon Dioxide Gas Sensor Using a Graphene Sheet. Sensors and Actuators B: Chemical, 157, 310-313.
http://dx.doi.org/10.1016/j.snb.2011.03.035
[16] Robinson, J.T., Perkins, F.K., Snow, E.S., Wei, Z. and Sheehan, P.E. (2008) Reduced Graphene Oxide Molecular Sensors. Nano Letters, 8, 3137-3140. http://dx.doi.org/10.1021/nl8013007
[17] Hu, N., Wang, Y., Chai, J., Gao, R., Yang, Z., Kong, E.S.W. and Zhang, Y. (2012) Gas Sensor Based on P-Phenylenediamine Reduced Graphene Oxide. Sensors and Actuators B: Chemical, 163, 107-114.
http://dx.doi.org/10.1016/j.snb.2012.01.016
[18] Massera, E., Ferrara, V.L.A., Miglietta, M., Polichetti, T., Nasti, I. and Francia, G.D.I. (2011) Gas Sensors Based on Graphene. Chemistry Today, 29, 39-41.
[19] Guo, L., Jiang, H.-B., Shao, R.-Q., Zhang, Y.-L., Xie, S.-Y., Wang, J.-N., Li, X.-B., Jiang, F., Chen, Q.-D., Zhang, T. and Sun, H.-B. (2012) Two-Beam-Laser Interference Mediated Reduction, Patterning and Nanostructuring of Graphene Oxide for the Production of a Flexible Humidity Sensing Device. Carbon, 50, 1667-1673. http://dx.doi.org/10.1016/j.carbon.2011.12.011
[20] Yao, Y., Chen, X., Guo, H., Wu, Z. and Li, X. (2012) Humidity Sensing Behaviors of Graphene Oxide-Silicon Bi-Layer Flexible Structure. Sensors and Actuators B: Chemical, 161, 1053-1058.
http://dx.doi.org/10.1016/j.snb.2011.12.007
[21] Yao, Y., Chen, X., Guo, H. and Wu, Z. (2011) Graphene Oxide Thin Film Coated Quartz Crystal Microbalance for Humidity Detection. Applied Surface Science, 257, 7778-7782.
http://dx.doi.org/10.1016/j.apsusc.2011.04.028
[22] Hummers, W. and Offeman, R. (1958) Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80, 1339-1339. http://dx.doi.org/10.1021/ja01539a017
[23] Fan, Z.-J., Kai, W., Yan, J., Wei, T., Zhi, L.-J., Feng, J., Ren, Y.-M., Song, L.-P. and Wei, F. (2011) Facile Synthesis of Graphene Nanosheets via Fe Reduction of Exfoliated Graphite Oxide. ACS Nano, 5, 191-198. http://dx.doi.org/10.1021/nn102339t
[24] Cote, L.J., Cruz-Silva, R. and Huang, J. (2009) Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite. Journal of the American Chemical Society, 131, 11027-11032.
http://dx.doi.org/10.1021/ja902348k
[25] Valles, C., David Nunez, J., Benito, A.M. and Maser, W.K. (2012) Flexible Conductive Graphene Paper Obtained by Direct and Gentle Annealing of Graphene Oxide Paper. Carbon, 50, 835-844.
http://dx.doi.org/10.1016/j.carbon.2011.09.042
[26] Gomez-Navarro, C., Weitz, R.T., Bittner, A.M., Scolari, M., Mews, A., Burghard, M. and Kern, K. (2007) Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets. Nano Letters, 7, 3499-3503. http://dx.doi.org/10.1021/nl072090c
[27] Schniepp, H.C., Li, J.-L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Prud’homme, R.K., Car, R., Saville, D.A. and Aksay, I.A. (2006) Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. The Journal of Physical Chemistry B, 110, 8535-8539.
http://dx.doi.org/10.1021/jp060936f
[28] Jeong, H.-K., Lee, Y.P., Jin, M.H., Kim, E.S., Bae, J.J. and Lee, Y.H. (2009) Thermal Stability of Graphite Oxide. Chemical Physics Letters, 470, 255-258. http://dx.doi.org/10.1016/j.cplett.2009.01.050
[29] Cho, J.-H., Yu, J.-B., Kim, J.-S., Sohn, S.-O., Lee, D.-D. and Huh, J.-S. (2005) Sensing Behaviors of Polypyrrole Sensor under Humidity Condition. Sensors and Actuators B: Chemical, 108, 389-392. http://dx.doi.org/10.1016/j.snb.2004.12.082
[30] Sun, A., Li, Z., Wei, T., Li, Y. and Cui, P. (2009) Highly Sensitive Humidity Sensor at Low Humidity Based on the Quaternized Polypyrrole Composite Film. Sensors and Actuators B: Chemical, 142, 197-203. http://dx.doi.org/10.1016/j.snb.2009.08.028
[31] Geng, W., Li, N., Li, X., Wang, R., Tu, J. and Zhang, T. (2007) Effect of Polymerization Time on the Humidity Sensing Properties of Polypyrrole. Sensors and Actuators B: Chemical, 125, 114-119.
http://dx.doi.org/10.1016/j.snb.2007.01.041
[32] Lin, W.-D., Chang, H.-M. and Wu, R.-J. (2013) Applied Novel Sensing Material Graphene/Polypyrrole for Humidity Sensor. Sensors and Actuators B: Chemical, 181, 326-331.
http://dx.doi.org/10.1016/j.snb.2013.02.017
[33] Suri, K., Annapoorni, S., Sarkar, A. and Tandon, R. (2002) Gas and Humidity Sensors Based on Iron Oxidepolypyrrole Nanocomposites. Sensors and Actuators B: Chemical, 81, 277-282.
http://dx.doi.org/10.1016/S0925-4005(01)00966-2
[34] Anderson, J.H. and Parks, G.A. (1968) The Electrical Conductivity of Silica Gel in the Presence of Adsorbed Water. The Journal of Physical Chemistry, 177, 3662-3668.
http://dx.doi.org/10.1021/j100856a051
[35] De Boer, J. and Van Doorn, A. (1958) Graphite Oxide. V. The Sorption of Water. Koninklijke Nederlandse Akademie van Wetenschappen, Series B, 61, 242-252.