[1] Bertoin, J. (1998) Lévy Processes. Vol. 121, Cambridge University Press, Cambridge.
[2] Sato, K. (1999) Lévy Processes and Infinitely Divisible Distribution. Vol. 68 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, Translated from the 1990 Japanese Original, Revised by the Author, 1999.
[3] Cont, R. and Tankov, P. (2004) Financial Modeling with Jump Processes. Chapman & Hall/CRC, Boca Raton, London, New York.
[4] Duffie, D. and Lando, D. (2001) Term Structure of Credit Spreads with Incomplete Accounting Information. Econometrica, 69, 633-664. http://dx.doi.org/10.1111/1468-0262.00208
[5] Kou, S.G. and Wang, H. (2003) First Passage Time of a Jump Diffusion Process. Advances in Applied Probability, 35, 504-531. http://dx.doi.org/10.1239/aap/1051201658
[6] Bernyk, V., Dalang, R.C. and Peskir, G. (2008) The Law of the Supremum of a Stable Lévy Process with No Negative Jumps. The Annals of Probability, 36, 1777-1789. http://dx.doi.org/10.1214/07-AOP376
[7] Guo, X., Jarrow, R. and Zeng, Y. (2009) Credit Model with Incomplete Information (Earlier Version Information Reduction in Credit Risk Models). Mathematics of Operations Research, 34, 320-332. http://dx.doi.org/10.1287/moor.1080.0361
[8] Dorobantu, D. (2007) Modélisation de risque de défaut en enterprise. Thèse de l’Université de Toulouse 3.
[9] Roynette, B., Vallois, P. and Volpi, A. (2008) Asymptotic Behavior of the Hitting Time, Overshoot and Undershoot for Some Lévy Processes. ESAIM: PS, 12, 58-93.
[10] Gapeev, P.V. and Jeanblanc, M. (2010) Pricing and Filtering in Two-Dimensional Dividend Switching Model. International Journal of Theoretical and Applied Finance, 13, 1001-1017. http://dx.doi.org/10.1142/S021902491000608X
[11] Coutin, L. and Dorobantu, D. (2011) First Passage Time Law for Some Lévy Process with Compound Poisson: Existence of a Density. Bernoulli, 17, 1127-1135. http://dx.doi.org/10.3150/10-BEJ323
[12] Zakai, M. (1969) On the Optimal Filtering Diffusion Process. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 11, 230-249. http://dx.doi.org/10.1007/BF00536382
[13] Pardoux, E. (1991) Filtrage non linéaire et équations aux dérivées partielles stochastiques associées. Ecole d’Eté de Probabilités de Saint-Flour-1989, Lecture Notes in Mathematics 1464, Springer-Verlag, Heidelberg, New York.
[14] Coutin, L. (1996) Filtrage d’un système càd-làg: Application du calcul des variations stochastiques à l'existence d'une densité. Stochastics and Stochastics Reports, 58, 209-243. http://dx.doi.org/10.1080/17442509608834075
[15] Bain, A. and Crisan, D. (2009) Fundamentals of Stochastic Filtering. Springer-Verlag, New York. http://dx.doi.org/10.1007/978-0-387-76896-0
[16] Karatzas, I. and Shreve, S.E. (1991) Brownian Motion and Stochastic Calculus. Second Edition, Springer-Verlag, New York.
[17] Doney, R.A. and Kiprianou, A. (2005) Overshoot and Undershoot of Lévy Process. The Annals of Applied Probability, 16, 91-106. http://dx.doi.org/10.1214/105051605000000647
[18] Protter, P. (1985) Volterra equations driven by semi martingale. Annals of Probability, 13, 518-530. http://dx.doi.org/10.1214/aop/1176993006
[19] Revuz, D. and Yor, M. (1999) Continuous Martingales and Brownian Motion. Third Edition, Springer-Verlag, Berlin, Heldelberg, New York. http://dx.doi.org/10.1007/978-3-662-06400-9
[20] Protter, P. (2003) Stochastic Integration and Differential Equation. Second Edition, Springer, Berlin.
[21] Jeanblanc, M. and Rutkowski, M. (2000) Modeling of Default Risk: Mathematical Tools, Mathematical Finance; Theory and Practice. Modern Mathematics Series, High Education Press.