OJFD  Vol.5 No.4 , December 2015
Effect of Curvature of Tip and Convexity of Electrode on Localization of Particles
Abstract: We investigate the effect of curvature of the tip and the convexity of an electrode on the localization of suspended particles under the combined effect of dielectrophoresis and AC electroosmosis through simulations using COMSOL Multiphysics. A systematic analysis of the parameters defining the convexity of the electrode—the radius of the tip and the apex angle shows that suspended particles can be trapped closely to the electrode edges for comparatively larger tip radii and apex angles. This in turn should favour the trapping of polarizable molecules between the electrodes only if the fluid velocities at the vortices are not very strong.
Cite this paper: Ghonge, S. , Prasad, D. , Narayan, S. , Francis, H. , Sethi, A. , Deb, S. and Banerjee, S. (2015) Effect of Curvature of Tip and Convexity of Electrode on Localization of Particles. Open Journal of Fluid Dynamics, 5, 295-301. doi: 10.4236/ojfd.2015.54030.

[1]   Abramowitz, S. (1996) Towards Inexpensive DNA Diagnostics. Trends in Biotechnology, 14, 397-401.

[2]   Washizu, M. and Kurosawa, O. (1990) Electrostatic Manipulation of DNA in Microfabricated Structures. IEEE Transactions on Industry Applications, 26, 1166-1172.

[3]   Pohl, H.A. (1978) Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields. Cambridge University Press, Cambridge.

[4]   Asbury, C.L. and van den Engh, G. (1998) Trapping of DNA in Nonuniform Oscillating Electric Fields. Biophysical Journal, 74, 1024-1030.

[5]   Bakewell, D.J. and Morgan, H. (2006) Dielectrophoresis of DNA: Time- and Frequency-Dependent Collections on Microelectrodes. IEEE Transactions on Nano Bioscience, 5, 1-8.

[6]   Loucaides, N.G., Ramos, A. and Georghiou, G.E. (2008) Trapping and Manipulation of Nanoparticles by Using Jointly Dielectrophoresis and AC Electroosmosis. Journal of Physics: Conference Series, 100, Article ID: 052015.

[7]   Du, J.-R., Juang, Y.-J., Wu, J.-T. and Wei, H.-H. (2008) Long-Range and Superfast Trapping of DNA Molecules in an AC Electrokinetic Funnel. Biomicrofluidics, 2, Article ID: 044103.

[8]   Washizu, M., Kurosawa, O., Arai, I., Suzuki, S. and Shimamoto, N. (1995) Applications of Electrostatic Stretch-and-Positioning of DNA. IEEE Transactions on Industry Applications, 31, 447-456.

[9]   Asbury, C.L., Diercks, A.H. and van den Engh, G. (2002) Trapping of DNA by Dielectrophoresis. Electrophoresis, 23, 2658-2666.<2658::aid-elps2658>;2-o

[10]   Porath, D., Bezryadin, A., De Vries, S. and Dekker, C. (2000) Direct Measurement of Electrical Transport through DNA Molecules. Nature, 403, 635-638.

[11]   Zheng, L.F., Brody, J.P. and Burke, P.J. (2004) Electronic Manipulation of DNA, Proteins, and Nanoparticles for Potential Circuit Assembly. Biosensors and Bioelectronics, 20, 606-619.

[12]   Ramos, A., Morgan, H., Green, N.G. and Castellanos, A. (1998) AC Electrokinetics: A Review of Forces in Microelectrode Structures. Journal of Physics D: Applied Physics, 31, 2338.

[13]   Green, N.G., Ramos, A., Gonzalez, A., Morgan, H. and Castellanos, A. (2002) Fluid Flow Induced by Nonuniform AC Electric Fields in Electrolytes on Microelectrodes. III. Observation of Streamlines and Numerical Simulation. Physical Review E, 66, Article ID: 026305.

[14]   Comsol 4.3a.

[15]   Green, N.G. and Morgan, H. (1997) Dielectrophoretic Investigations of Sub-Micrometre Latex Spheres. Journal of Physics D: Applied Physics, 30, 2626.

[16]   Bown, M.R. and Meinhart, C.D. (2006) AC Electroosmotic Flow in a DNA Concentrator. Microfluidics and Nanofluidics, 2, 513-523.

[17]   Tuukkanen, S., Kuzyk, A., Toppari, J.J., Hakkinen, H., Hytonen, V.P., Niskanen, E., Rinkio, M. and Torma, P. (2007) Trapping of 27 bp - 8 kbp DNA and Immobilization of Thiol-Modified DNA Using Dielectrophoresis. Nanotechnology, 18, Article ID: 295204.

[18]   Regtmeier, J., Eichhorn, R., Bogunovic, L., Ros, A. and Anselmetti, D. (2010) Dielectrophoretic Trapping and Polarizability of DNA: The Role of Spatial Conformation. Analytical Chemistry, 82, 7141-7149.