[1] Abramowitz, S. (1996) Towards Inexpensive DNA Diagnostics. Trends in Biotechnology, 14, 397-401.
http://dx.doi.org/10.1016/0167-7799(96)10051-2
[2] Washizu, M. and Kurosawa, O. (1990) Electrostatic Manipulation of DNA in Microfabricated Structures. IEEE Transactions on Industry Applications, 26, 1166-1172.
http://dx.doi.org/10.1109/28.62403
[3] Pohl, H.A. (1978) Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields. Cambridge University Press, Cambridge.
[4] Asbury, C.L. and van den Engh, G. (1998) Trapping of DNA in Nonuniform Oscillating Electric Fields. Biophysical Journal, 74, 1024-1030.
http://dx.doi.org/10.1016/s0006-3495(98)74027-5
[5] Bakewell, D.J. and Morgan, H. (2006) Dielectrophoresis of DNA: Time- and Frequency-Dependent Collections on Microelectrodes. IEEE Transactions on Nano Bioscience, 5, 1-8.
[6] Loucaides, N.G., Ramos, A. and Georghiou, G.E. (2008) Trapping and Manipulation of Nanoparticles by Using Jointly Dielectrophoresis and AC Electroosmosis. Journal of Physics: Conference Series, 100, Article ID: 052015.
http://dx.doi.org/10.1088/1742-6596/100/5/052015
[7] Du, J.-R., Juang, Y.-J., Wu, J.-T. and Wei, H.-H. (2008) Long-Range and Superfast Trapping of DNA Molecules in an AC Electrokinetic Funnel. Biomicrofluidics, 2, Article ID: 044103.
http://dx.doi.org/10.1063/1.3037326
[8] Washizu, M., Kurosawa, O., Arai, I., Suzuki, S. and Shimamoto, N. (1995) Applications of Electrostatic Stretch-and-Positioning of DNA. IEEE Transactions on Industry Applications, 31, 447-456.
http://dx.doi.org/10.1109/28.382102
[9] Asbury, C.L., Diercks, A.H. and van den Engh, G. (2002) Trapping of DNA by Dielectrophoresis. Electrophoresis, 23, 2658-2666.
http://dx.doi.org/10.1002/1522-2683(200208)23:16<2658::aid-elps2658>3.0.co;2-o
[10] Porath, D., Bezryadin, A., De Vries, S. and Dekker, C. (2000) Direct Measurement of Electrical Transport through DNA Molecules. Nature, 403, 635-638.
[11] Zheng, L.F., Brody, J.P. and Burke, P.J. (2004) Electronic Manipulation of DNA, Proteins, and Nanoparticles for Potential Circuit Assembly. Biosensors and Bioelectronics, 20, 606-619.
http://dx.doi.org/10.1016/j.bios.2004.03.029
[12] Ramos, A., Morgan, H., Green, N.G. and Castellanos, A. (1998) AC Electrokinetics: A Review of Forces in Microelectrode Structures. Journal of Physics D: Applied Physics, 31, 2338.
http://dx.doi.org/10.1088/0022-3727/31/18/021
[13] Green, N.G., Ramos, A., Gonzalez, A., Morgan, H. and Castellanos, A. (2002) Fluid Flow Induced by Nonuniform AC Electric Fields in Electrolytes on Microelectrodes. III. Observation of Streamlines and Numerical Simulation. Physical Review E, 66, Article ID: 026305.
http://dx.doi.org/10.1103/PhysRevE.66.026305
[14] Comsol 4.3a. http://www.comsol.com
[15] Green, N.G. and Morgan, H. (1997) Dielectrophoretic Investigations of Sub-Micrometre Latex Spheres. Journal of Physics D: Applied Physics, 30, 2626.
http://dx.doi.org/10.1088/0022-3727/30/18/018
[16] Bown, M.R. and Meinhart, C.D. (2006) AC Electroosmotic Flow in a DNA Concentrator. Microfluidics and Nanofluidics, 2, 513-523.
http://dx.doi.org/10.1007/s10404-006-0097-4
[17] Tuukkanen, S., Kuzyk, A., Toppari, J.J., Hakkinen, H., Hytonen, V.P., Niskanen, E., Rinkio, M. and Torma, P. (2007) Trapping of 27 bp - 8 kbp DNA and Immobilization of Thiol-Modified DNA Using Dielectrophoresis. Nanotechnology, 18, Article ID: 295204.
http://dx.doi.org/10.1088/0957-4484/18/29/295204
[18] Regtmeier, J., Eichhorn, R., Bogunovic, L., Ros, A. and Anselmetti, D. (2010) Dielectrophoretic Trapping and Polarizability of DNA: The Role of Spatial Conformation. Analytical Chemistry, 82, 7141-7149.
http://dx.doi.org/10.1021/ac1005475