Back
 JEMAA  Vol.7 No.12 , December 2015
A New Approach Based on MoM-GEC Method to Mutual Coupling Analysis of Symmetric Twin Waveguides for Antenna Applications
Abstract: In previous modeling works, the waveguide radiation in the free space is modeled using an infinite flange in aperture plan. In this paper, we propose a new formulation to analyze the radiation of twin rectangular waveguides in free space. Our formulation consists firstly in simulating the free space as rectangular waveguide and seeking the appropriate dimensions that do not affect scattering parameters. In the second step, we use the symmetry principle to reduce the coupling problem to single guide radiating in the free space. Moreover, for more simplification, we consider a concentric discontinuity to solve this latter. This approach is based on moments method combined to the generalized equivalent circuit method (MoM-GEC) in order to reduce the number of unknown problems and alleviate their computation. Obtained numerical results are presented and discussed. A good agreement with literature is shown and the boundary conditions are verified.
Cite this paper: Kaddouri, A. , Aidi, M. and Aguili, T. (2015) A New Approach Based on MoM-GEC Method to Mutual Coupling Analysis of Symmetric Twin Waveguides for Antenna Applications. Journal of Electromagnetic Analysis and Applications, 7, 283-290. doi: 10.4236/jemaa.2015.712030.
References

[1]   Hirokawa, J. (2012) Plate-Laminated Waveguide Slot Array Antennas and Its Polarization Conversion Layers. Automatika—Journal for Control, Measurement, Electronics, Computing and Communications, 53.
http://dx.doi.org/10.7305/automatika.53-1.143

[2]   Douvalis, V., Hao, Y. and Parini, C.G. (2006) A Monolithic Active Conical Horn Antenna Array for Millimeter and Submillimeter Wave Applications. IEEE Transactions on Antennas and Propagation, 54, 1393-1398.
http://dx.doi.org/10.1109/TAP.2006.874338

[3]   Lo, Y.T. and Lee, S.W. (2013) Antenna Handbook: Theory, Applications, and Design. Springer Science & Business Media, Berlin.

[4]   Lewin, L. (1951) Advanced Theory of Waveguides. Published for Wireless Engineer by Iliffe.

[5]   Mazauric, V. (2011) Une approche variationnelle de lkélectromagnétisme.

[6]   Tai, C.T. (1949) Application of a Variational Principle to Biconical Antennas. Journal of Applied Physics, 20, 1076.
http://dx.doi.org/10.1063/1.1698278

[7]   Mailloux, R.J. (1969) Radiation and Near-Field Coupling between Two Collinear Open-Ended Waveguides. IEEE Transactions on Antennas and Propagation, 17, 49-55.
http://dx.doi.org/10.1109/TAP.1969.1139354

[8]   Mailloux, R.J. (1969) First-Order Solutions for Mutual Coupling between Waveguides Which Propagate Two Orthogonal Modes. IEEE Transactions on Antennas and Propagation, 17, 740-746.
http://dx.doi.org/10.1109/TAP.1969.1139529

[9]   Hockham, G.A. and Walker, G.H. (1973) Study of a Finite Phased Array Antenna. 3rd European Microwave Conference, 1-4.
http://dx.doi.org/10.1109/euma.1973.331796

[10]   Bird, T.S. (1979) Mode Coupling in a Planar Circular Waveguide Array. IEE Journal on Microwaves, Optics and Acoustics, 3, 172-180.
http://dx.doi.org/10.1049/ij-moa.1979.0041

[11]   Bird, T.S. (1990) Analysis of Mutual Coupling in Finite Arrays of Different-Sized Rectangular Waveguides. IEEE Transactions on Antennas and Propagation, 38, 166-172.
http://dx.doi.org/10.1109/8.45118

[12]   Luzwick, J. and Harrington, R.F. (1982) Mutual Coupling Analysis in a Finite Planar Rectangular Waveguide Antenna Array. Electromagnetics, 2, 25-42.
http://dx.doi.org/10.1080/02726348208915155

[13]   Arndt, F., Wolff, K.-H., Brunjes, L., et al. (1989) Generalized Moment Method Analysis of Planar Reactively Loaded Rectangular Waveguide Arrays. IEEE Transactions on Antennas and Propagation, 37, 329-338.

[14]   Macphie, R.H., Zaghloul, A., et al. (1980) Radiation from a Rectangular Waveguide with Infinite Flange—Exact Solution by the Correlation Matrix Method. IEEE Transactions on Antennas and Propagation, 28, 497-503.

[15]   Teodoridis, V., Sphicopoulos, T. and Gardiol, F.E. (1985) The Reflection from an Open-Ended Rectangular Waveguide Terminated by a Layered Dielectric Medium. IEEE Transactions on Microwave Theory and Techniques, 33, 359-366.

[16]   Baudrand, H., Tao, J.-W. and Atechian, J. (1988) Study of Radiating Properties of Open-Ended Rectangular Waveguides. IEEE Transactions on Antennas and Propagation, 36, 1071-1077.
http://dx.doi.org/10.1109/8.7219

[17]   Li, J.-Y., Li, L.-W., Liang, C.-H., et al. (2001) Analysis of Finite-Slot Phased Arrays Fed by Rectangular Waveguides Using Method of Moments. Microwave and Optical Technology Letters, 29, 132-136.
http://dx.doi.org/10.1002/mop.1107

[18]   Ghosh, B., Sinha, S.N. and Kartikeyan, M.V. (2010) Radiation from Rectangular Waveguide-Fed Fractal Apertures. IEEE Transactions on Antennas and Propagation, 58, 2088-2093.
http://dx.doi.org/10.1109/TAP.2010.2046835

[19]   Serizawa, H. and Hongo, K. (2005) Radiation from a Flanged Rectangular Waveguide. IEEE Transactions on Antennas and Propagation, 53, 3953-3962.
http://dx.doi.org/10.1109/TAP.2005.859748

[20]   Mongiardo, M. and Rozzi, T. (1993) Singular Integral Equation Analysis of Flange-Mounted Rectangular Waveguide Radiators. IEEE Transactions on Antennas and Propagation, 41, 556-565.
http://dx.doi.org/10.1109/8.222274

[21]   Baudrand, H. and Bajon, D. (2002) Equivalent Circuit Representation for Integral Formulations of Electromagnetic Problems. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 15, 23-57.
http://dx.doi.org/10.1002/jnm.430

[22]   Aguili, T. (2000) Modélisation des composants SH F planaires par la méthode des circuits équivalents généralisés. Thesis Manuscript, National Engineering School of Tunis, Tunisia.

[23]   Baudrand, H. and Aubert, H. (2003) L’Electromagnétisme par les Schémas Equivalents. Cepaduès Editions, Paris.

[24]   Hajji, M., Mendil, S. and Aguili, T. (2014) A New Hybrid MoM-GEC Asymptotic Method for Electromagnetic Scattering Computation in Waveguides. Progress in Electromagnetics Research B, 61, 197-210.
http://dx.doi.org/10.2528/PIERB14101303

 
 
Top