[1] Brenner, D.J. and Hall, E.J. (2007) Computed Tomography—An Increasing Source of Radiation Exposure. The New England Journal of Medicine, 357, 2277-2284.
http://dx.doi.org/10.1056/NEJMra072149
[2] Pickhardt, P.J., Lubner, M.G., Kim, D.H., et al. (2012) Abdominal CT with Model-Based Iterative Reconstruction (MBIR): Initial Results of a Prospective Trial Comparing Ultralow-Dose with Standard-Dose Imaging. American Journal of Roentgenology, 199, 1266-1274.
http://dx.doi.org/10.2214/AJR.12.9382
[3] Khawaja, R.D.A., Singh, S., Otrakji, A., et al. (2014) Dose Reduction in Pediatric Abdominal CT: Use of Iterative Reconstruction Techniques across Different CT Platforms. Pediatric Radiology, 45, 1046-1055.
[4] Mathieu, K.B., Ai, H., Fox, P.S., et al. (2014) Radiation Dose Reduction for CT Lung Cancer Screening Using ASIR and MBIR: A Phantom Study. Journal of Applied Clinical Medical Physics, 15, 4515.
[5] Rampinelli, C., Origgi, D., Vecchi, V., et al. (2015) Ultra-Low-Dose CT with Model-Based Iterative Reconstruction (MBIR): Detection of Ground-Glass Nodules in an Anthropomorphic Phantom Study. Radiologia Medica, 120, 611-617.
[6] Nishizawa, M., Tanaka, H., Watanabe, Y., et al. (2014) Model-Based Iterative Reconstruction for Detection of Subtle Hypoattenuation in Early Cerebral Infarction: A Phantom Study. Japanese Journal of Radiology, 33, 26-32.
http://dx.doi.org/10.1007/s11604-014-0376-z
[7] Hu, M.-Q., Li, M., Liu, Z.-Y., et al. (2015) Image Quality Evaluation of Iterative Model Reconstruction on Low Tube Voltage (80 kVp) Coronary CT Angiography in an Animal Study. Acta Radiologica, pii: 0284185114568909.
[8] Gramer, B.M., Muenzel, D., Leber, V., et al. (2012) Impact of Iterative Reconstruction on CNR and SNR in Dynamic Myocardial Perfusion Imaging in an Animal Model. European Radiology, 22, 2654-2661.
http://dx.doi.org/10.1007/s00330-012-2525-z
[9] Caywood, D., Paxton, B., Boll, D., et al. (2014) Effects of Model-Based Iterative Reconstruction on Image Quality for Low-Dose Computed Tomographic Angiography of the Thoracic Aorta in a Swine Model. Journal of Computer Assisted Tomography, 39, 196-201.
[10] (2000) European Guidelines for Quality Criteria for Computed Tomography. European Commission, Luxembourg.
[11] Hwang, H.J., Seo, J.B., Lee, H.J., et al. (2013) Low-Dose Chest Computed Tomography with Sinogram-Affirmed Iterative Reconstruction, Iterative Reconstruction in Image Space, and Filtered Back Projection: Studies on Image Quality. Journal of Computer Assisted Tomography, 37, 610-617.
http://dx.doi.org/10.1097/RCT.0b013e31828f4dae
[12] Lee, S.H., Kim, M.J., Yoon, C.S., et al. (2012) Radiation Dose Reduction with the Adaptive Statistical Iterative Reconstruction (ASIR) Technique for Chest CT in Children: An Intra-Individual Comparison. European Journal of Radiology, 81, e938-e943.
http://dx.doi.org/10.1016/j.ejrad.2012.06.013
[13] Ren, Q., Dewan, S.K., Li, M., et al. (2012) Comparison of Adaptive Statistical Iterative and Filtered Back Projection Reconstruction Techniques in Brain CT. European Journal of Radiology, 81, 2597-2601.
http://dx.doi.org/10.1016/j.ejrad.2011.12.041
[14] Vardhanabhuti, V., Ilyas, S., Gutteridge, C., et al. (2013) Comparison of Image Quality between Filtered Back-Projection and the Adaptive Statistical and Novel Model-Based Iterative Reconstruction Techniques in Abdominal CT for Renal Calculi. Insights Imaging, 4, 661-669.
http://dx.doi.org/10.1007/s13244-013-0273-5
[15] Katsura, M., Sato, J., Akahane, M., et al. (2013) Comparison of Pure and Hybrid Iterative Reconstruction Techniques with Conventional Filtered Back Projection: Image Quality Assessment in the Cervicothoracic Region. European Journal of Radiology, 82, 356-360.
http://dx.doi.org/10.1016/j.ejrad.2012.11.004
[16] Ichikawa, Y., Kitagawa, K., Nagasawa, N., et al. (2013) CT of the Chest with Model-Based, Fully Iterative Reconstruction: Comparison with Adaptive Statistical Iterative Reconstruction. BMC Medical Imaging, 13, 27.
http://dx.doi.org/10.1186/1471-2342-13-27
[17] Mueck, F.G., Roesch, S., Scherr, M., et al. (2015) How Low Can We Go in Contrast-Enhanced CT Imaging of the Chest? A Dose-Finding Cadaver Study Using the Model-Based Iterative Image Reconstruction Approach. Academic Radiology, 22, 345-356.
http://dx.doi.org/10.1016/j.acra.2014.10.008
[18] Yamada, Y., Jinzaki, M., Hosokawa, T., et al. (2012) Dose Reduction in Chest CT: Comparison of the Adaptive Iterative Dose Reduction 3D, Adaptive Iterative Dose Reduction, and Filtered Back Projection Reconstruction Techniques. European Journal of Radiology, 81, 4185-4195.
http://dx.doi.org/10.1016/j.ejrad.2012.07.013
[19] May, M.S., Wüst, W., Brand, M., et al. (2011) Dose Reduction in Abdominal Computed Tomography. Investigative Radiology, 46, 465-470.
http://dx.doi.org/10.1097/RLI.0b013e31821690a1
[20] Wang, R., Yu, W., Wu, R., et al. (2012) Improved Image Quality in Dual-Energy Abdominal CT: Comparison of Iterative Reconstruction in Image Space and Filtered Back Projection Reconstruction. American Journal of Roentgenology, 199, 402-406.
http://dx.doi.org/10.2214/AJR.11.7159
[21] Kamimura, K., Suda, T., Xu, W., et al. (2009) Image-Guided, Lobe-Specific Hydrodynamic Gene Delivery to Swine Liver. Molecular Therapy, 17, 491-499.
http://dx.doi.org/10.1038/mt.2008.294
[22] Gravante, G., Ong, S.L., Metcalfe, M.S., et al. (2011) The Porcine Hepatic Arterial Supply, Its Variations and Their Influence on the Extracorporeal Perfusion of the Liver. Journal of Surgical Research, 168, 56-61.
http://dx.doi.org/10.1016/j.jss.2009.09.050
[23] Martins, A.C. de A., Machado, M.A.C. and Ferraz, á.A.B. (2008) Porcine Liver: Experimental Model for the IntraHepatic Glissonian Approach. Acta Cirurgica Brasileira, 23, 204-207.
http://dx.doi.org/10.1590/S0102-86502008000200015