SNL  Vol.1 No.3 , July 2011
Soft-Chemical Synthesis of Vanadium Oxide Nanostructures Using 3, 3’, 3”-Nitrilotripropionic Acid ( NTP) as a Carrier
Abstract: Vanadium oxide nanostructures were synthesized using NTP as a carrier through soft-chemical method. The influence of calcination temperature on the phase and morphology of obtained pristine product were characterized using X-ray diffraction (XRD), thermal gravimetric analysis (TGA) and scanning electron microscopy (SEM). Cyclic voltammogram studies were conducted to examine the electrochemical performance of cathodes made of vanadium oxide nanostructures. X-ray diffraction results show that, the particle size of the nanomaterials is increases with the increasing of calcination temperature.
Cite this paper: nullV. Channu, R. Holze and B. Rambabu, "Soft-Chemical Synthesis of Vanadium Oxide Nanostructures Using 3, 3’, 3”-Nitrilotripropionic Acid ( NTP) as a Carrier," Soft Nanoscience Letters, Vol. 1 No. 3, 2011, pp. 66-70. doi: 10.4236/snl.2011.13012.

[1]   R. N. Reddy and R. G. Reddy, “Porous Structured Vanadium Oxide Electrode Material for Electrochemical Capacitors,” Journal of Power Sources, Vol. 156, No. 2, 2006, pp. 700-704. doi:10.1016/j.jpowsour.2005.05.071

[2]   J. Liu, X. Wang, Q. Peng and Y. Li, “Vanadium Pentoxide Nanobelts: Highly Selective and Stable Ethanol Sensor Materials,” Advanced Materials, Vol. 17, No. 6, 2005, pp. 764-767. doi:10.1002/adma.200400993

[3]   C. Lampe-Onnerud, J. O. Thomas, M. Hardgrave and S. Yde-Anderson, “The Performance of Single-Phase V6O13 in the Lithium/Polymer Electrolyte Battery,” Journal of Electrochemical Society, Vol. 142, No. 11, 1995, pp. 3648-3651. doi:10.1002/adma.200400993

[4]   I. Balberb and S. Trokman, “High-Contrast Optical Storage in VO2 Films,” Journal of Applied Physics, Vol. 46, No. 5, 1975, pp. 2111-2119. doi:10.1063/1.321849

[5]   K. C. Cam and A. K. Cheetham, “Thermochromic VO2 Nanorods and Other Vanadium Oxides Nanostructures,” Materials Research Bulletin, Vol. 41, No. 5, 2006, pp. 1015-1021. doi:10.1016/j.materresbull.2006.03.024

[6]   P. Singh and D. Kaura, “Influence of Film Thickness on Texture and Electrical and Optical Properties of Room Temperature Deposited Nanocrystalline V2O5 Thin Films,” Journal of Applied Physics, Vol. 103, No. 4, 2008, pp. 043507-043507-9. doi:10.1063/1.2844438

[7]   Q. Su, W. Lan, Y. Y. Wang and X. Q. Liu, “Structural Characterization of -V2O5 Films Prepared by DC Reactive Magnetron Sputtering,” Applied Surface Science, Vol. 255, 2009, pp. 4177-4179. doi:10.1016/j.apsusc.2008.11.002

[8]   P. Balog, D. Orosel, Z. Cancarevic, C. Sch?n and M. Jansen, “V2O5 Phase Diagram Revisited at High Pressures and High Temperatures,” Journal of Alloys & Compounds, Vol. 429, No. 1-2, 2007, pp. 87-98. doi:10.1016/j.jallcom.2006.04.042

[9]   G. Ertl, H. Knozinger and J. Weitkamp (Eds.), “Hand Book of Heterogenous Catalysis,” Vol. 4, Wiley-VCH, Weinhem, 1997.

[10]   Y. Yang, L. Xiao, Y. Zhao and F. Wang, “Hydrothermal Synthesis and Electrochemical Characterization of a- MnO2 Nanorods as Cathode Material for Lithium Batteries,” International Journal of Electrochemical Science, Vol. 3, No. 1, 2008, pp. 67-74.

[11]   L. Q. Mai, B. Hu, Y. Qi, Y. Dai and W. Chen, “Improved Cycling Performance of Directly Lithiated MoO3 Nanobelts,” International Journal of Electrochemical Science, Vol. 3, No. 2, 2008, pp. 216-222.

[12]   M. E. G. Lyons, “Transport and Kinetics at Carbon Nanotube—Redox Enzyme Composite Modified Electrode Biosensors Part 2. Redox Enzyme Dispersed in Nanotube Mesh of Finite Thickness,” International Journal of Electrochemical Science, Vol. 4, No. 9, 2009, pp. 1196- 1236.

[13]   C. Kong, Z. A. Hu, H. X. Zhao, Y. Y. Yang, X. L. Shang, L. J. Ren and Y. P. Wang, “Preparation of Ag Nanowire Array Electrode by Transplantation and Its Electrochemical Activities,” International Journal of Electrochemical Science, Vol. 2, No. 2, 2007, pp. 133-140.

[14]   K. Takahashi, S. J. Limmer, Y. Wang and G. Z. Cao, “Synthesis and Electrochemical Properties of Single- Crystal V2O5 Nanorod Arrays by Template-Based Electrodeposition,” Journal of Physical Chemistry B, Vol. 109, No. 8, 2004, pp. 9795-9800. doi:10.1021/jp0491820

[15]   S. Nordlinder, K. Edstrom and T. Gustafsson, “The Performance of Vanadium Oxide Nanorolls as Cathode Material in a Rechargeable Lithium Battery,” Electrochemical and Solid-State Letters, Vol. 4, No. 8, 2001, pp. A129-A131. doi:10.1149/1.1382888

[16]   P. Liu, J. G. Zhang, C. E. Tracy and J. A. Turner, “Electrochemical Deposition of Vanadium Oxide in the Presence of Surfactants A Novel Approach toward High-Rate Lithium Battery Cathodes,” Electrochemical and Solid- State Letters, Vol. 3, No. 4, 2000, pp.163-166. doi:10.1149/1.1390990

[17]   Y. Wang and G. Cao, “Synthesis and Enhanced Intercalation Properties of Nanostructured Vanadium Oxides,” Chemical Materials, Vol. 18, No. 12, 2006, pp. 2787- 2804. doi:10.1021/cm052765h

[18]   Z. Zheng, B. Yan, Y. You, J. Zhang, Z. X. Shen, C.-T. Lim and T. Yu, “Potassium Tungsten Bronze Nanowires: Polarized Micro-Raman Scattering of Individual Nano- wires and Electron Field Emission from Nanowire Films,” Advanced Materials, Vol. 20, 2008, pp. 352-356. doi:10.1002/adma.200701514

[19]   E. H. Walker Jr., A. W. Apblett, R. Walker and A. Zachary, “The Novel Synthesis of La0.8Sr0.2MnO3 Using the Michael-Addition Directed Hydrogelation of Acrylates for Materials Synthesis (MADHAMS) Method,” Chemical Materials, Vol. 16, No. 25, 2004, pp. 5336-5343. doi:10.1021/cm0489385

[20]   V. S. R. Channu, R. Holze, B. Rambabu, Q. L. Williams, R. R. Kalluru and W. Chen, “Reduction of V4+ from V5+ Using Polymer as a Surfactant for Electrochemical Applications,” International Journal of Electrochemical Science, Vol. 5, 2010, pp. 605-614.

[21]   M. Jayalakshmi and K. Balasubramanian, “Simple Capacitors to Supercapacitors—An Overview,” International Journal of Electrochemical Science, Vol. 3, 2008, pp. 1196-1217.