[1] D. J. Stepan, R. E. Shockey, T. A. Moe and R. Dorn. “SUBTASK, 2.3-Carbon Dioxide Sequestering Using Microalgal Systems,” U.S. Department of Energy, National Energy Technology Laboratory, 2001.
[2] B. Hileman, “U.S. Urged to Change CO2 Emissions Policy,” Chemical Engineering News, Vol. 70, No. 1, 1992, pp. 16-22. doi:10.1021/cen-v070n008.p016
[3] O. Pulz and W. Gross, “Valuable Products from Biotechnology of Microalgae,” Applied Microbiology and Biotechnology, Vol. 65, No. 3, 2004, pp. 635-648. doi:10.1007/s00253-004-1647-x
[4] Y. Chisti, “Biodiesel from Microalgae,” Biotechnology Advances, Vol. 25, No. 3, 2007, pp. 294-306. doi:10.1016/j.biotechadv.2007.02.001
[5] E. Ono and J. L. Cuello, “Selection of Optimal Microalgae Species for CO2 Sequestration,” Proceedings 2nd Annual Conference on Carbon Sequestration, Alexandria, 2003, pp. 1-7.
[6] Oilgae, “Algae Oil Yield,” 2011. http://www.oilgae.com/algae/oil/yield/yield.html
[7] Biofpr, “The Promise and Challenges of Microalgal-De- rived Biofuels,” 2009. http://www.afdc.energy.gov/afdc/pdfs/microalgal_biofuels_darzins.pdf
[8] J. H. Fike, D. J. Parrish, J. Alwang and J. S. Cundiff, “Challenges for Deploying Dedicated, Large-Scale, Bioenergy Systems in the USA,” Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, Vol. 2, No. 64, 2007, pp. 1-28.
[9] P. Chelf, L. M. Brown and C. E. Wyman, “Aquatic Biomass Resources and Carbon Dioxide,” Biomass and Eioenergy, Vol. 4, No. 3, 1993, pp. 175-183. doi:10.1016/0961-9534(93)90057-B
[10] K. L. Kada, “Microalgae Production from Power Plant Flue Gas: Environmental Implications on a Life Cycle Basis,” National Renewable Energy Laboratory publications, NREL/TP-510-29417, Golden, CO, 2001. doi:10.2172/783405
[11] J. R. Beneman, D. M. Tillet and J. C. Weissman, “Microalgae Biotechnology,” Trends in Biotechnology, Vol. 5, No. 2, 1987, pp.47-53.
[12] E. S. Kikkinides, R. T. Yang and S. H. Cho, “Concentration and recovery of carbon dioxide from flue gas by pressure swing adsorption,” Industrial Engineering Chemistry Research, Vol. 32, No. 11, 1993, pp. 2714-2720. doi:10.1021/ie00023a038
[13] D. Kilowatts, “America’s Most Polluting Power Plants,” Environmental, Integrity Project, National Renewable Energy Laboratory Publications, Washington DC, July 2007.
[14] J. Seckbach, H. Gross and M. B. Nathan, “Growth and Photosynthesis of Cyanidium Caldarium Cultured under Pure CO2,” Israel Journal of Botany, Vol. 20, 1971, pp. 84-90,
[15] N. Hanagata, T. Takeuchi and Y. Fukuju, “Tolerance of Microalgae to High CO2 and High Temperature,” Phytochemistry, Vol. 31, No. 10, 1992, pp. 3345-3348. doi:10.1016/0031-9422(92)83682-O
[16] M. Kodama, H. Ikemoto and S. Miyachi, “A New Species of Highly CO2-Tolreant Fast-Growing Marine Microalga Suitable for High-Density Culture,” Journal of Marine Biotechnology, Vol. 1, No. 1, 1993, pp. 21-25.
[17] S. Miyairi, “CO2 Assimilation in a Thermophilic Cyanobacterium,” Energy Conversion and Management, Vol. 36, No. 6-9, 1995, pp. 763-766. doi:10.1016/0196-8904(95)00116-U
[18] Y. Nakano, K. Miyatake, H. Okuno, K. Hamazaki, S. Takenaka, N. Honami, M. Kiyota, I. Aiga and J. Kondo, “Growth of Photosynthetic Algae Euglena in High CO2 Conditions and Its Photosynthetic Characteristics,” Acta Horticulturae, Vol. 440, No. 9, 1996, pp. 49-54.
[19] H. Nagase, K. Eguchi, K. Yoshihara, K. Hirata and K. Miyamoto, “Improvement of Microalgal NOx Removal in Bubble Column and Airlift Reactors,” Journal of Fermentation and Bioengineering, Vol. 86, No. 4, 1998, pp. 421-423. doi:10.1016/S0922-338X(99)89018-7
[20] K. Yoshihara, H. Nagase, K. Eguchi, K. Hirata and K. Miyamoto, “Biological Elimination of Nitric Oxide and Carbon Dioxide from Flue Gas by Marine Microalga NOA-113 Cultivation in a Long Tubular Photobioreactor,” Journal of Fermentation and Bioengineering, Vol. 82, No. 4, 1996, pp. 351-354. doi:10.1016/0922-338X(96)89149-5
[21] Y. Miura, W. Yamada, K. Hirata, K., Miyamoto and M. Kiyohara, “Stimulation of Hydrogen Production in Algal Cells Grown under High CO2 Concentration and Low Temperature,” Applied Biochemistry and Biotechnology, Vol. 39-40, No. 1, 1993, pp. 753-761. doi:10.1007/BF02919033
[22] H. Matsumoto, N. Shioji, A. Hamasaki, Y. Ikuta, Y. Fukuda, M. Sato, N. Endo and T. Tsukamoto, “Carbon Dioxide Fixation by Microalgae Photosynthesis Using Actual Flue Gas Discharged from a Boiler,” Applied Biochemistry and Biotechnology, Vol. 51-52, No. 1, 1995, 681-692. doi:10.1007/BF02933469
[23] S. Hirata, M. Hayashitani, M. Taya and S. Tone, “Carbon Dioxide Fixation in Batch Culture of Chlorella sp. Using a Photobioreactior with a Sunlight-Collection Device,” Journal of fermentation and bioengineering, Vol. 81, No. 5, 1996, pp. 470-472. doi:10.1016/0922-338X(96)85151-8
[24] S. Hirata, M. Taya and S. Tone, “Characterization of Chlorella Cell Cultures in Batch and Continuos Operations under a Photoautotrophic Condition,” Journal of Chemical Engineering of Japan, Vol. 29, No. 6, 1996, pp. 953-959. doi:10.1252/jcej.29.953
[25] K. Maeda, M. Owada, N. Kimura, L. Omata, and I. Karube, “CO2 Fixation from the Flue Gas on Coalfired Thermal Power Plant by Microalgae,” Energy conversion Management, Vol. 36, No. 6-9, 1995, pp. 717-720. doi:10.1016/0196-8904(95)00105-M
[26] L. E. Graham and L. W. Wilcox, “Algae,” Prentice-Hall, Inc., Upper Saddle River, 2000.
[27] L. M. Brown, “Uptake of Carbon Dioxide from Flue Gas by Microalgae,” Energy Conversion and Management, Vol. 37, No. 6-8, 1996, pp. 1363-1367.
[28] T. M. Sobczuk, F. G. Camacho, F. C. Rubio, F. G. A. Fernandez and E. M. Grima, “Carbon Dioxide Uptake Efficiency by Outdoor Microalgal Cultures in Tubular Airlift Photobioreactors,” Biotechnology and Bioengineering, Vol. 67, No. 4, 2000, pp. 465-475. doi:10.1002/(SICI)1097-0290(20000220)67:4<465::AID-BIT10>3.0.CO;2-9
[29] J. A. Oswald, “Large-Scale Algal Culture Systems (Engineering Aspects),” In: L. J. Borowitzka and M. A. Borowitzka, Eds., Microalgal biotechnology, Cambridge University Press, Cambridge, 1988, pp. 357-395.
[30] P. Tapie and A. Bernard, “Microalgae Production Technical and Economic Evaluations,” Biotechnology and Bioengineering, Vol. 32, No. 7, 1988, pp. 873-885. doi:10.1002/bit.260320705
[31] S. Rados, B. Vaclav and D. Frantisek D, “CO2 Balance in Industrial Cultivation of Algae,” Archives of Hydrobiology, Vol. 46, No. 12, 1975, pp. 297-310.
[32] Y. K. Lee and H. K. Hing, “Supplying CO2 to Photosynthetic Algal Cultures by Diffusion through Gas-Permea- ble Membranes,” Applied Microbiology and Biotechnology, Vol. 31, No. 3, 1989, pp.298-301. doi:10.1007/BF00258413
[33] J. Beardall, S. Beer and J. A. Raven, “Biodiversity of Marine Plants in an Era of Climate Change: Some Predictions Based on Physiological Performance,” Botanica Marina, Vol. 41, No. 1-6, 1998, pp. 113-124.
[34] P. Schippers, M. Lürling and M. Scheffer, “Increase of Atmospheric CO2 Promotes Phytoplankton Productivity,” Ecology Letters, Vol. 7, No. 6, 2004, pp. 446-451. doi:10.1111/j.1461-0248.2004.00597.x
[35] J. K. Ward and B. R. Strain, “Elevated CO2 Studies: Past, Present and Future,” Tree Physiology, Vol. 19, 1999, pp. 211-220.
[36] S. Beer and E. Koch, “Photosynthesis of Marine Microalgae and Seagrasses in Globally Changing CO2 Environments,” Marine Ecology Progress Series, Vol. 141, 1996, pp. 199-204. doi:10.3354/meps141199
[37] J. Flexas, M. Ribas-Carbó, A. Diaz-Espejo, J. Galmés and H. Medrano, “Mesophyll Conductance to CO2: Current Knowledge and Future Prospects,” Plant, Cell and Environment, Vol. 31, No. 5, 2008, pp. 602-621. doi:10.1111/j.1365-3040.2007.01757.x
[38] T. Andersen, F. O. Andersen and O. Pedersen, “Increased CO2 in the Water around Littorella Uniflora Raises the Sediment O2 Concentration,” Aquatic Botany, Vol. 84, No. 4, 2006, pp. 294-300. doi:10.1016/j.aquabot.2005.11.006
[39] T. Andersen and F. O. Andersen, “Effects of CO2 Concentration on Growth of Filamentous Algae and Littorella Uniflora in a Danish Softwater Lake,” Aquatic Botany, Vol. 84, No. 3, 2006, pp. 267-271. doi:10.1016/j.aquabot.2005.09.009
[40] J. E. Kubler, A. M. Johnston and J. A. Raven, “The Effects of Reduced and Elevated CO2 and O2 on the Seaweed Lomentaria Articulate,” Plant, Cell and Environment, Vol. 22, No. 10, 1999, pp. 1303-1310. doi:10.1046/j.1365-3040.1999.00492.x
[41] B. Tisserat, “Influence of Ultra-High Carbon Dioxide Concentrations on Growth and Morphogenesis of Lamiaceae Species in Soil,” Journal of Herbs, Spices & Medicinal Plants, Vol. 9, No. 1, 2002, pp. 81-89. doi:10.1300/J044v09n01_09
[42] Y-S. Yun and J. Moon Park, “Development of Gas Recycling Photobioreactor System for Microalgal Carbon Dioxide Fixation,” Journal Korean Journal of Chemical Engineering, Vol. 14, No. 4, 1997, pp. 297-300. doi:10.1007/BF02706827
[43] L. Yue and W. Chen, “Isolation and Determination of Cultural Characteristics of a New Highly CO2 Tolerant Fresh Water Microalgae,” Energy Conversion and Management, Vol. 46, No. 11-12, 2005, pp. 1868-1876. doi:10.1016/j.enconman.2004.10.010
[44] Y. Watanabe, N. Ohmura and H. Saiki, “Isolation and Determination of Cultural Characteristics of Microalgae Which Functions under CO2 Enriched Atmosphere,” Energy Conversion and Management, Vol. 33, No. 5-8, 1992, pp. 545-552. doi:10.1016/0196-8904(92)90054-Z
[45] Y. Nakano, K. Hamasaki, S. Takenaka, K. Miyatake, A. Tani and I. Aiga, “Adaptation and the Mechanism of Euglena gracilis to High CO2 Conditions,” CELSS Journal, Vol. 8, No. 2, 1995, pp. 7-12.
[46] Y. Yang and K. Gao, “Effects of CO2 Concentrations on the Freshwater Microalgae, Chlamydomonas Reinhardtii, Chlorella Pyrenoidosa and Scenedesmus Obliquus (Chlorophyta),” Journal of Applied Phycology, Vol. 15, No. 5, 2003 , pp. 379-389. doi:10.1023/A:1026021021774
[47] A. Papazia, P. Makridisb, P. Divanachb and K. Kotzabasisa, “Bioenergetic Changes in the Microalgal Photosynthetic Apparatus by Extremely High CO2 Concentrations Induce an Intense Biomass Production,” Physiologia Plantarum, Vol. 132, No. 3, 2008, pp. 338-349. doi:10.1111/j.1399-3054.2007.01015.x
[48] T. Shiraiwa, “Mechanism for the Acclimation of Photosynthetic Machinery to Change in Environmental CO2 Concentration in Eukaryotic Microalgae,” 2005. http://www.biol.tsukuba.ac.jp/~ikawa/shiraiwaHP/hp04/home04E.html
[49] D. O. Hessen, “Excess Carbon in Aquatic Organisms and Ecosystems: Physiological, Ecological, and Evolutionary Implications,” Limnology and Oceanography, Vol. 53, No. 3, 2008, pp. 1685-1696. doi:10.4319/lo.2008.53.4.1685
[50] M. Tsuzuki, M. Gantar, K. Aizawa and S. Miyachi, “Ultrastructure of Dunaliella Tertiolecta Cells Grown under Low and High CO2 Concentrations,” Plant Cell Physiology, Vol. 27, No. 4, 1986, pp. 737-739.
[51] E. W. Becker, “Microalgae: Biotechnology and Microbiology,” Cambridge University Press, Cambridge, 1995.
[52] H. E. Glover and I. Morris, “Photosynthetic Characteristics of Coccoid Marine Cyanobacteria,” Archives of Microbiology, Vol. 129, No. 1, 1981, pp. 42-46. doi:10.1007/BF00417177
[53] D. H. Pope, “Effects of Light Intensity, Oxygen Concentration, and Carbon Dioxide Concentration on Photosynthesis in Algae,” Microbial Ecology, Vol. 2, No. 1, 1975, pp. 1-16. doi:10.1007/BF02010377
[54] Y. C. Jeon, C. W. Cho and Y. S. Yu, “Measurement of Microalgal Photosynthetic Activity Depending on Light Intensity and Quality,” Biochemical Engineering Journal, Vol. 27, No. 2, 2005, pp. 127-131. doi:10.1016/j.bej.2005.08.017
[55] J. Kondo, “Growth of Photosynthetic Algae Euglena in High CO2 Conditions and Its Photosynthetic Characteristics,” Acta Horticulturae, Vol. 440, No. 9, 1996, pp. 49- 54.
[56] H. T. Hsueh, H. Chu and S. T. Yu, “A Batch Study on the Bio-Fixation of Carbon Dioxide in the Absorbed Solution from a Chemical Wet Scrubber by Hot Spring and Marine Algae,” Chemosphere, Vol. 66, No. 5, 2007, pp. 878-886. doi:10.1016/j.chemosphere.2006.06.022
[57] P. J. McGinn, K. E. Dickinson, S. Bhatti, J. Frigon, S. R. Guiot and S. J. B. O’Leary, “Integration of Microalgae Cultivation with Industrial Waste Remediation for Biofuel and Bioenergy Production: Opportunities and Limitations,” Photosynthesis Research, 2011, (in Press). doi:10.1007/s11120-011-9638-0
[58] R. A. Andersen, “Algal Culturing Techniques,” Elsevier Academic Press, Burlington, 2005.
[59] A. P. Carvalho, L. A. Meireles and F. Xavier, “Microalgal Reactors: A Review of Enclosed System Designs and Performances,” Biotechnology Progress, Vol. 22, No. 6, 2006, pp. 1490-1506. doi:10.1002/bp060065r
[60] D. A. Caron, J. C. Goldman and M. R. Dennet, “Effect of Temperature on Growth, Respiration, and Nutrient Regeneration by an Omnivorous Microflagellate,” Applied and Environmental Microbiology, Vol. 52, No. 6, 1986, pp. 1340-1347.
[61] L. Brennan and P. Owend, “Biofuels from Microalgae—A Review of Technologies for Production, Process- ing, and Extractions of Biofuels and Co-Products,” Renewable and Sustainable Energy Reviews, Vol. 14, No. 2, 2010, pp. 557-577. doi:10.1016/j.rser.2009.10.009
[62] A. Dauta, J. Devaux, F. Piquemal and L. Boumnich, “Growth Rate of Four Freshwater Algae in Relation to Light and Temperature,” Hydrobiologia, Vol. 207, No. 1, 1990, pp. 221-226. doi:10.1007/BF00041459