AM  Vol.6 No.12 , November 2015
Multicriteria Partial Cooperative Games
Abstract: In this paper, we study an approach to environmental topics, through multicriteria partial cooperative games. In general, not all players wish to cooperate to solve a common problem, so we consider a model where only some decision-makers cooperate. Starting from the transformation of a coalition game into a strategic one, we give a new concept of solution for partial cooperative models proving an existence theorem.
Cite this paper: Pieri, G. and Pusillo, L. (2015) Multicriteria Partial Cooperative Games. Applied Mathematics, 6, 2125-2131. doi: 10.4236/am.2015.612186.

[1]   Göran-Maler, K., Xepapadeas, A. and De Zeeuw, A. (2003) The Economics of Shallow Lakes. Environmental and Resource Economics, 26, 603-624.

[2]   Hardin, G. (1968) The Tragedy of Commons. Science, 162.

[3]   Axelrod, R. and Dion, D. (1988) The Further Evolution of Cooperation. Science, 1242, 1385-1390.

[4]   Ostrom, E. (1990) Governing the Commons. The Evolution of Institution for Collective Action. Cambridge University Press, Cambridge.

[5]   Carraro, C. and Siniscalco, D. (1993) Strategies for the Protection of the Environment. Journal of Public Economic, 52, 309-328.

[6]   Finus, M. (2001) Game Theory and International Environmental Cooperation. Edward Elgar Ed.

[7]   Hanley, N., Shogren, J.F. and White, B. (1997) Environmental Economics in Theory and Practice. MacMillan, London.

[8]   Morgan, J. and Prieur, F. (2013) Global Emission Ceiling versus International Cap and Trade: What Is the Most Efficient System When Countries Act Non-Cooperatively? Environmental Modeling and Assessment.

[9]   Tidball, M. and Zaccour, G. (2005) An Environmental Game with Coupling Constraints. Environmental Modeling and Assessment, 10, 153-158.

[10]   Fläm, S.D. (2006) Balanced Environmental Games. Computers and Operations Research, 33, 401-408.

[11]   Aumann, R.J. and Dréze, J. (1974) Cooperative Games with Coalition Structures. International Journal of Game Theory, 3, 217-237.

[12]   Borm, P.E.M. and Tijs, S.H. (1992) Strategic Claim Games Corresponding to an NTU-Game. Games and Economic Behavior, 4, 58-71.

[13]   Monderer, D. and Shapley, L.S. (1996) Potential Games. Games and Economic Behavior, 14, 124-143.

[14]   Myerson, R. (1997) Game Theory. Analysis of Conflict. Harvard University Press.

[15]   Owen, G. (1977) Values of Games with a Priori Unions. In: Boehan, V. and Nachthanp, H., Eds., Mathematical Economics and Game Theory, Springer-Verlag, Berlin, 76-88.

[16]   Pusillo, L. and Tijs, S. (2012) E-Equilibria for Multicriteria Games. In: Cardaliaguet, P. and Cressman, R., Eds., Advances in Dynamic Games, Annals of the International Society of Dynamic Games, Vol. 12, Birkhäuser, Boston, 217- 228.

[17]   Patrone, F., Pusillo, L. and Tijs, S. (2007) Multicriteria Games and Potentials. TOP, 15, 138-145.

[18]   Pieri, G. and Pusillo, L. (2010) Interval Values for Multicriteria Cooperative Games. AUCO Czech Economic Review, 4, 144-155.

[19]   Puerto Albandoz, J. and Fernandez Garcia, F.R. (2006) Teoria de Juegos Multiobjetivo. Imagraf Impresores, Sevilla.

[20]   Shapley, L.S. (1959) Equilibrium Points in Games with Vector Payoffs. Naval Research Logistic Quarterly, 6, 57-61.

[21]   Ayoshim, D.A. and Tanaka, T. (2000) On the Partial Cooperative Games. Non Linear Analysis and Convex Analysis, Rimskokyuroku, 1136, 9-12.

[22]   Mallozzi, L. and Tijs, S. (2008) Partial Cooperation and Non-Signatories Multiple Decision. AUCO Czech Economic Review, 2, 21-27.

[23]   Meca-Martínez, A., Sánchez Soriano, J., García-Jurado, I. and Tijs, S. (1998) Strong Equilibria in Claim Games Corresponding to Convex Games. International Journal of Game Theory, 27, 211-217.