AM  Vol.6 No.12 , November 2015
Multicriteria Partial Cooperative Games
ABSTRACT
In this paper, we study an approach to environmental topics, through multicriteria partial cooperative games. In general, not all players wish to cooperate to solve a common problem, so we consider a model where only some decision-makers cooperate. Starting from the transformation of a coalition game into a strategic one, we give a new concept of solution for partial cooperative models proving an existence theorem.

Cite this paper
Pieri, G. and Pusillo, L. (2015) Multicriteria Partial Cooperative Games. Applied Mathematics, 6, 2125-2131. doi: 10.4236/am.2015.612186.
References
[1]   Göran-Maler, K., Xepapadeas, A. and De Zeeuw, A. (2003) The Economics of Shallow Lakes. Environmental and Resource Economics, 26, 603-624.

[2]   Hardin, G. (1968) The Tragedy of Commons. Science, 162.

[3]   Axelrod, R. and Dion, D. (1988) The Further Evolution of Cooperation. Science, 1242, 1385-1390.

[4]   Ostrom, E. (1990) Governing the Commons. The Evolution of Institution for Collective Action. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511807763

[5]   Carraro, C. and Siniscalco, D. (1993) Strategies for the Protection of the Environment. Journal of Public Economic, 52, 309-328.
http://dx.doi.org/10.1016/0047-2727(93)90037-T

[6]   Finus, M. (2001) Game Theory and International Environmental Cooperation. Edward Elgar Ed.

[7]   Hanley, N., Shogren, J.F. and White, B. (1997) Environmental Economics in Theory and Practice. MacMillan, London.

[8]   Morgan, J. and Prieur, F. (2013) Global Emission Ceiling versus International Cap and Trade: What Is the Most Efficient System When Countries Act Non-Cooperatively? Environmental Modeling and Assessment.
http://dx.doi.org/10.1007/s10666-013-9361-7

[9]   Tidball, M. and Zaccour, G. (2005) An Environmental Game with Coupling Constraints. Environmental Modeling and Assessment, 10, 153-158.

[10]   Fläm, S.D. (2006) Balanced Environmental Games. Computers and Operations Research, 33, 401-408.

[11]   Aumann, R.J. and Dréze, J. (1974) Cooperative Games with Coalition Structures. International Journal of Game Theory, 3, 217-237.
http://dx.doi.org/10.1007/BF01766876

[12]   Borm, P.E.M. and Tijs, S.H. (1992) Strategic Claim Games Corresponding to an NTU-Game. Games and Economic Behavior, 4, 58-71.
http://dx.doi.org/10.1016/0899-8256(92)90005-D

[13]   Monderer, D. and Shapley, L.S. (1996) Potential Games. Games and Economic Behavior, 14, 124-143.
http://dx.doi.org/10.1006/game.1996.0044

[14]   Myerson, R. (1997) Game Theory. Analysis of Conflict. Harvard University Press.

[15]   Owen, G. (1977) Values of Games with a Priori Unions. In: Boehan, V. and Nachthanp, H., Eds., Mathematical Economics and Game Theory, Springer-Verlag, Berlin, 76-88.
http://dx.doi.org/10.1007/978-3-642-45494-3_7

[16]   Pusillo, L. and Tijs, S. (2012) E-Equilibria for Multicriteria Games. In: Cardaliaguet, P. and Cressman, R., Eds., Advances in Dynamic Games, Annals of the International Society of Dynamic Games, Vol. 12, Birkhäuser, Boston, 217- 228.

[17]   Patrone, F., Pusillo, L. and Tijs, S. (2007) Multicriteria Games and Potentials. TOP, 15, 138-145.
http://dx.doi.org/10.1007/s11750-007-0008-1

[18]   Pieri, G. and Pusillo, L. (2010) Interval Values for Multicriteria Cooperative Games. AUCO Czech Economic Review, 4, 144-155.

[19]   Puerto Albandoz, J. and Fernandez Garcia, F.R. (2006) Teoria de Juegos Multiobjetivo. Imagraf Impresores, Sevilla.

[20]   Shapley, L.S. (1959) Equilibrium Points in Games with Vector Payoffs. Naval Research Logistic Quarterly, 6, 57-61.
http://dx.doi.org/10.1002/nav.3800060107

[21]   Ayoshim, D.A. and Tanaka, T. (2000) On the Partial Cooperative Games. Non Linear Analysis and Convex Analysis, Rimskokyuroku, 1136, 9-12.

[22]   Mallozzi, L. and Tijs, S. (2008) Partial Cooperation and Non-Signatories Multiple Decision. AUCO Czech Economic Review, 2, 21-27.

[23]   Meca-Martínez, A., Sánchez Soriano, J., García-Jurado, I. and Tijs, S. (1998) Strong Equilibria in Claim Games Corresponding to Convex Games. International Journal of Game Theory, 27, 211-217.
http://dx.doi.org/10.1007/s001820050067

 
 
Top