ENG  Vol.3 No.7 , July 2011
Optimization of Bead Geometry in CO2 Laser Welding of Ti 6Al 4V Using Response Surface Methodology
Abstract: In the presented study, the laser butt-welding of Ti 6Al 4V is investigated using 2.2 kw CO2 laser. Ti 6Al 4V alloy has widespread application in various fields of industries including the medical, nuclear and aerospace. In this study, Response Surface Methodology (RSM) is employed to establish the design of experiments and to optimize the bead geometry. The relationships between the input laser-welding parameters (i.e. laser power, welding speed and focal point position) and the process responses (i.e. welded zone width, heat affected zone width, welded zone area, heat affected zone area and penetration depth) are investigated. The multi-response optimizations are used to optimize the welding process. The optimum welding conditions are identified in order to increase the productivity and minimize the total operating cost. The validation results demonstrate that the developed models are accurate with low percentages of error (less than 12.5%).
Cite this paper: nullA. Khorram, M. Ghoreishi, M. Yazdi and M. Moradi, "Optimization of Bead Geometry in CO2 Laser Welding of Ti 6Al 4V Using Response Surface Methodology," Engineering, Vol. 3 No. 7, 2011, pp. 708-712. doi: 10.4236/eng.2011.37084.

[1]   C. Dawes, “Laser Welding,” Abington Publishing, Abington, 1992.

[2]   M. J. Donachie, “Titanium: A Technical Guide,” American Society for Microbiology International, Materials Park, 1988, pp. 133-156.

[3]   G. E. P. Box and K. B. Wilson, “On the Experimental Attainment of Optimum Conditions,” Journal of the Royal Statistical Society, Series B, Vol. 13, No. 1, 1951, pp. 1-38.

[4]   Z. Boumerzoug, C. Derfouf and T. Baudin, “Effect of Welding on Microstructure and Mechanical Properties of an Industrial Low Carbon Steel,” Engineering, Vol. 2, No. 7, 2010, pp. 502-506. doi:10.4236/eng.2010.27066

[5]   B. I. Mendoza1, Z. C.Maldonado, H. A. Albiter and P. E. Robles, “Dissimilar Welding of Superduplex Stainless Steel/HSLA Steel for Offshore Applications Joined by GTAW,” Engineering, Vol. 2, No. 7, 2010, pp. 520-528. doi:10.4236/eng.2010.27069

[6]   A. G. Olabi, K. Y. Benyounis and M. S. J. Hashmi, “Application of Response Surface Methodology in Describing the Residual Stress Distribution in CO2 Laser Welding of AISI304,” Strain: An International Journal Experimental Mechanics, Vol. 43, No. 1, 2007, pp. 37-46.

[7]   G. Casalino, F. Curcio and F. M. C. Minutolo, “Investigation on Ti6Al4V Laser Welding Using Statistical and Taguchi Approaches,” Journal of Materials Processing Technology, Vol. 167, No. 2-3, 2005, pp. 422-428. doi:10.1016/j.jmatprotec.2005.05.031

[8]   A. G. Olabi, G. Casalino, K. Y. Benyounis and M. S. J. Hashmi, “An ANN and Taguchi Algorithms Integrated Approach to the Optimization of CO2 Laser Welding,” Advances in Engineering Software, Vol. 37, No. 10, 2006, pp. 643-648. doi:10.1016/j.advengsoft.2006.02.002

[9]   E. Akman, A. Demir, T. Canel and T. S?nmazcelik, “Laser Welding of Ti6Al4V Titanium Alloys,” Journal of Materials Processing Technology, Vol. 209, No. 8, 2009, pp. 3705-3713. doi:10.1016/j.jmatprotec.2008.08.026

[10]   Z. Li, S. L. gobbi, I. Norris, S. Zolotosvkyand and K. H. Richter, “Laser Welding Technique for Titanium Alloy Sheet,” Journal of Material Process Technology, Vol. 65, No. 1-3, 1997, pp. 203-205. doi:10.1016/S0924-0136(96)02263-7

[11]   E. M. Anawa and A. G. Olabi, “Using Taguchi Method to Optimize Welding Pool of Dissimilar Laser-Welded Components,” Optics & Laser Technology, Vol. 40, No. 2, March 2008, pp. 379-388. doi:10.1016/j.optlastec.2007.07.001

[12]   D. C. Montgomery, “Design and Analysis of Experiments,” 2nd Edition, Wiley, New York, 2007.

[13]   AI. Khuri and J. A. Cornell, “Response Surfaces Design and Analysis,” 2nd Edition, Marcel Dekker, New York, 1996.