[1] Ohno, A. (1986) Continuous Casting of Single Crystal Ingot by the OCC Process. Journal of Metals, 38, 14-16.
[2] Ganapathysubramanian, B. and Zabaras, N. (2005) On the Control of Solidification Using Magnetic Fields and Magnetic Field Gradients. International Journal of Heat and Mass Transfer, 48, 4174-4189.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.04.027
[3] Hof, B., Juel, A. and Mullin, T. (2003) Magneto-hydrodynamic Damping of Convective Flows in Molten Gallium. Journal of Fluid Mechanics, 482, 63-179.
[4] Ganapathysubramanian, B. and Zabaras, N. (2004) Using Magnetic Field Gradients to Control the Directional Solidification of Alloys and the Growth of Single Crystals. Journal of Crystal Growth, 270, 255-272.
http://dx.doi.org/10.1016/j.jcrysgro.2004.06.020
[5] Watring, D.A. and Lehoczky, S.L. (1996) Magne-to-Hydrodynamic Damping of Convection during Vertical Bridgman- Stockbarger Growth of HgCdTe. Journal of Crystal Growth, 167, 478-487.
http://dx.doi.org/10.1016/0022-0248(96)00279-5
[6] Bojarevics, A., Cramer, A., Gelfgatand, Y.U. and Gerbeth, G. (2006) Experiments on the Magnetic Damping of an Inductively Stirred Liquid Metal Flow. Experiments in Fluids, 40, 257-266.
http://dx.doi.org/10.1007/s00348-005-0065-x
[7] Lei, H., Zhang, H. and He, J. (2009) Flow, Solidification, and Solute Transport in a Continuous Casting Mold with Electromagnetic Brake. Chemical Engineering & Technology, 32, 991-1002.
http://dx.doi.org/10.1002/ceat.200800346
[8] Tian, X., Zou, F., Li, B. and He, J. (2010) Numerical Analysis of Coupled Fluid Flow, Heat Transfer and Macroscopic Solidification in the Thin Slab Funnel Shape Mold with a New Type EMBr. Metallurgical and Materials Transactions B, 40, 112-120.
http://dx.doi.org/10.1007/s11663-009-9314-3
[9] Cukierski, K. and Thomas, B. (2008) Flow Control with Local Electromagnetic Braking in Continuous Casting of Steel Slabs. Metallurgical and Materials Transactions B, 39, 94-107.
http://dx.doi.org/10.1007/s11663-007-9109-3
[10] Mechighel, H. and Kadja, M. (2007) External Horizontally Uniform Magnetic Field Applied to Steel Solidification. Journal of Applied Sciences, 7, 903-912.
http://dx.doi.org/10.3923/jas.2007.903.912
[11] Wei, J.A., Zheng, L. and Zhang, H. (2009) Suppression of Melt Convection in a Proposed Bridgman Crystal Growth System. International Journal of Heat and Mass Transfer, 52, 3747-3756.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.02.029
[12] Battira, M. and Bessaih, R. (2008) Three-Dimensional Natural Convection in the Horizontal Bridgman Configuration under Various Wall Electrical Conductivity and Magnetic Field. Numerical Heat Transfer, Part A: Applications, 55, 58-76.
http://dx.doi.org/10.1080/10407780802603113
[13] Gelfgat, A. and Yoseph, P. (2001) The Effect of an External Magnetic Field on Oscillatory Instability of Convective Flows in a Rectangular Cavity. Physics of Fluids, 13, 2269-2278.
http://dx.doi.org/10.1063/1.1383789
[14] Hurle, D. (1966) Temperature Oscillations in Molten Metals and Their Relationship to Growth Striae in Melt-Grown Crystals. Philosophical Magazine, 13, 305-310.
http://dx.doi.org/10.1080/14786436608212608
[15] Utech, H.P. and Flemings, M.C. (1966) Elimination of Solute Banding in Indium Antimonide Crystals by Growth in a Magnetic Field. Journal of Applied Physics, 37, 2021-2024.
http://dx.doi.org/10.1063/1.1708664
[16] Utech, H.P. and Flemings, M.C. (1967) Thermal Convection in Metal-Crystal Growth—Effect of a Magnetic Field. Journal of Physics and Chemistry of Solids, 28, 651.
[17] Oreper, H.P. and Szekely, J. (1984) The Effect of a Magnetic Field on Transport Phenomena in a Bridgman-Stock-barger Crystal Growth. Journal of Crystal Growth, 67, 405-419.
http://dx.doi.org/10.1016/0022-0248(84)90033-2
[18] Rudraiah, N., Barron, R.M., Venkatachalappa, M. and Subbaraya, C. (1995) Effect of a Magnetic Field on Free Convection in a Rectangular Enclosure. International Journal of Engineering Science, 33, 1075-1084.
http://dx.doi.org/10.1016/0020-7225(94)00120-9
[19] Motakef, S. (1990) Magnetic Field Elimination of Convective Interference with Segregation during Vertical-Bridgman Growth of Doped Semiconductors. Journal of Crystal Growth, 104, 833-850.
http://dx.doi.org/10.1016/0022-0248(90)90109-X
[20] Kim, D.H., Adornato, P.M. and Brown, R.A. (1988) Effect of Vertical Magnetic Field on Convection and Segregation in Vertical Bridgman Crystal Growth. Journal of Crystal Growth, 89, 339-356.
http://dx.doi.org/10.1016/0022-0248(88)90419-8
[21] Ben Hadid, H., Henry, D. and Kaddeche, S. (1997) Numerical Study of Convection in the Horizontal Bridgman Configuration under the Action of a Constant Magnetic Field. Part 1. Two-Dimensional Flow. Journal of Fluid Mechanics, 333, 23-56.
http://dx.doi.org/10.1017/S0022112096004193
[22] Gunzberger, M., Ozugurlu, E., Turner, J. and Zhang, H. (2002) Controlling Transport Phenomena in the Czochralski Crystal Growth Process. Journal of Crystal Growth, 234, 47-62.
http://dx.doi.org/10.1016/S0022-0248(01)01635-9
[23] Bennon, D. and Incropera, F.P. (1987) A Continuum Model for Momentum, Heat and Species Transport in Binary Solid-Liquid Phase Change Systems—I. Model Formulation. International Journal of Heat and Mass Transfer, 30, 2161-2170.
http://dx.doi.org/10.1016/0017-9310(87)90094-9
[24] Fluent Inc. (2006) User’s Guide. 6.3.26 Version, Fluent Inc., New York.