AM  Vol.6 No.12 , November 2015
Asymptotic Confidence Bands for Copulas Based on the Local Linear Kernel Estimator
Abstract: In this paper, we establish asymptotically optimal simultaneous confidence bands for the copula function based on the local linear kernel estimator proposed by Chen and Huang [1]. For this, we prove under smoothness conditions on the derivatives of the copula a uniform in bandwidth law of the iterated logarithm for the maximal deviation of this estimator from its expectation. We also show that the bias term converges uniformly to zero with a precise rate. The performance of these bands is illustrated by a simulation study. An application based on pseudo-panel data is also provided for modeling the dependence structure of Senegalese households’ expense data in 2001 and 2006.
Cite this paper: Bâ, D. , Seck, C. and Lô, G. (2015) Asymptotic Confidence Bands for Copulas Based on the Local Linear Kernel Estimator. Applied Mathematics, 6, 2077-2095. doi: 10.4236/am.2015.612183.

[1]   Chen, S.X. and Huang, T.-M. (2007) Nonparametric Estimation of Copula Functions for Dependence Modeling. Canadian Journal of Statistics, 35, 265-282.

[2]   Nelsen, R.B. (2006) An Introduction to Copulas. 2nd Edition, Springer, New York.

[3]   Mason, D.M. and Swanepoel, J.W.H. (2010) A General Result on the Uniform in Bandwidth Consistency of Kernel-Type Function Estimators. TEST, 20, 72-94.

[4]   Tsukahara, H. (2005) Semiparametric Estimation in Copula Models. The Canadian Journal of Statistics, 33, 357-375.

[5]   Scaillet, O. and Fermanian, J.-D. (2002) Nonparametric Estimation of Copulas for Time Series. FAME Research Paper No. 57.

[6]   Genest, C. and Rivest, L. (1993) Statistical Inference for Archimedean Copulas. Journal of the American Statistical Association, 88, 1034-1043.

[7]   Deheuvels, P. (1979) La fonction de dépendence empirique et ses propriétés. Un test non paramétrique. d’indépendance. Bulletin Royal Belge de l’Académie des Sciences, 65, 274-292.

[8]   Fermanian, J., Radulovic, D. and Wegkamp, M. (2004) Weak Convergence of Empirical Copula Processes. International Statistical Institute (ISI) and Bernoulli Society for Mathematical Statistics and Probability, 10, 847-860.

[9]   Gijbels, I. and Mielniczuk, J. (1990) Estimation of the Density of a Copula Function. Communications in Statistics, Series A, 19, 445-464.

[10]   Omelka, M., Gijbels, I. and Veraverbeke, N. (2009) Improved Kernel Estimators of Copulas: Weak Convergence and Goodness-of-Fit Testing. The Annals of Statistics, 37, 3023-3058.

[11]   Dony, J. (2007) On the Uniform in Bandwidth Consistency of Kernel-Type Estimators and Conditional. Proceedings of the European Young Statisticians Meeting, Castro Urdiales, 10-14 September 2007.

[12]   Einmahl, U. and Mason, D.M. (2005) Uniform in Bandwidth Consistency of Kernel-Type Function Estimators. The Annals of Statistics, 33, 1380-1403.

[13]   Deheuvels, P. and Mason, D.M. (2004) General Asymptotic Confidence Bands Based on Kernel-Type Function Estimators. Statistical Inference Stochastic Process, 7, 225-277.

[14]   Zari, T. (2010) Contribution à l’étude du processus empirique de copule. Thèse de doctorat, Université Paris, Paris, 6.

[15]   Wichura, M.J. (1973) Some Strassen-Type Laws of the Iterated Logarithm for Multiparameter Stochastic Processes with Independent Increments. The Annals of Probability, 1, 272-296.

[16]   van der Vaart, A.W. and Wellner, J.A. (1996) Weak Convergence and Empirical Processes. Springer, New York.

[17]   Lo, G.S., Sall, S.T. and Mergane, P.D. (2015) Functional Weak Laws for the Weighted Mean Losses or Gains and Applications. Applied Mathematics, 6, 847-863.