[1] European Committee for Standardisation (2010) DIN-EN-50341-3-4-VDE-0210-3, Overhead Electrical Lines Exceeding AC 45 kV. Part I—General Requirements—Common Specifications. European Committee for Standardisation, Germany.
[2] Yasui, H., Marukawa, H., Momomura, Y. and Ohkuma, T. (1999) Analytical Study on Wind-Induced Vibration of Power Transmission Towers. Journal of Wind Engineering and Industrial Aerodynamics, 83, 431-441.
http://dx.doi.org/10.1016/S0167-6105(99)00091-4
[3] Battista, R.C., Rodrigues, R.S. and Pfeil, M.S. (2003) Dynamic Behavior and Stability of Transmission Line Towers under Wind Forces. Journal of Wind Engineering and Industrial Aerodynamics, 91, 1051-1067.
http://dx.doi.org/10.1016/S0167-6105(03)00052-7
[4] Rao, N.P., Légeron, F. and Prud’homme, S. (2012) Variation of Damping and Stiffness of Lattice Towers with Load Level. Journal of Constructional Steel Research, 71, 111-118.
http://dx.doi.org/10.1016/j.jcsr.2011.10.018
[5] Robert, V. and Lemelin, D.R. (2002) Flexural Consideration in Steel Transmission Tower Design. In: Electrical Transmission in a New Age, ASCE, Omaha.
http://dx.doi.org/10.1061/40642(253)11
[6] Albermani, F.G.A. and Kitipornchai, S. (2003) Numerical Simulation of Structural Behavior of Transmission Towers. Journal of Thin-Walled Structures, 41, 167-177.
http://dx.doi.org/10.1016/S0263-8231(02)00085-X
[7] da Silva, J.G.S., da Vellasco, P.C.G., de Andrade, S.A.L. and de Oliveira, M.I.R. (2005) Structural Assessment of Current Steel Design Models for Transmission and Telecommunication Towers. Journal of Constructional Steel Research, 61, 1108-1134.
http://dx.doi.org/10.1016/j.jcsr.2005.02.009
[8] McClure, G. and Lapointe, M. (2003) Modeling the Structural Dynamic Response of Overhead Transmission Lines. Journal of Computers and Structures, 81, 825-834.
http://dx.doi.org/10.1016/S0045-7949(02)00472-8
[9] McClure, G. and Lee, P.S. (2007) Elastoplastic Large Deformation Analysis of a Lattice Steel Tower Structure and Comparison with Full Scale Tests. Journal of Constructional Steel Research, 63, 709-717.
http://dx.doi.org/10.1016/j.jcsr.2006.06.041
[10] McClure, G., Jiang, W.Q., Wang, W.L. and Geng, J.D. (2011) Accurate Modeling of Joint Effects in Lattice Transmission Towers. Journal of Engineering Structures, 33, 1817-1827.
http://dx.doi.org/10.1016/j.engstruct.2011.02.022
[11] Keyhan, H., McClure, G. and Habashi, W.G. (2013) Dynamic Analysis of an Overhead Transmission Line Subject to Gusty Wind Loading Predicted by Wind-Conductor Interaction. Computers and Structures, 122, 135-144.
http://dx.doi.org/10.1016/j.compstruc.2012.12.022
[12] Yan, B., Lin, X.S., Luo, W., Chen, Z. and Liu, Z.Q. (2010) Numerical Study on Dynamic Swing of Suspension Insulator String in Overhead Transmission Line under Wind Load. IEEE Transactions on Power Delivery, 25, 248-259.
[13] Limongelli, M.P., Martinelli, L. and Perotti, F. (2003) A Reduced Model for the Dynamic Analysis of Power Transmission Lines with Truss Supporting Towers. Proceedings of the 5th International Symposium on Cable Dynamics, Santa Margherita, 15-18 September 2003, 125-132.
[14] DIN-1055-4:2005-03 (2005) Einwirkungen auf Tragwerke—Teil 4: Windlasten. Beuth Verlag GmbH, Berlin.
[15] Shinozuka, M. and Jan, C.M. (1972) Digital Simulation of Random Processes and Its Application. Journal of Sound and Vibration, 25, 111-128.
[16] Clobes, M. (2008) Identifikation und Simulation instationärer übertragung der Windturbulenz im Zeitbereich, in Fakultät für Architektur, Bauingenieurwesen und Umweltwissenschaften. Technischen Universität Carolo-Wilhelmina zu Braunschweig, Braunschweig.
[17] Denoël, V. (2005) Accounting for Coherence in Wind Forces in Finite Element Models. Département de Mécanique des matériaux et Structures, Université de Liège, Belgique.
[18] Cartwright, D.E. and Longuet-Higgins, M.S. (1956) The Statistical Distribution of the Maxima of a Random Function. Proceedings of the Royal Society of London, Series A, 237, 212-232.
[19] Davenport, A.G. (1964) Note on the Distribution of the Largest Value of a Random Function with Application to Gust Loading. ICE Proceedings, 28, 187-196.
http://dx.doi.org/10.1680/iicep.1964.10112
[20] Kareem, A. and Kwon, D. (2009) Peak Factor for Non-Gaussian Processes Revisited. Proceedings of the 7th Asia-Pacific Conference on Wind Engineering, Taipei, 8-12 November 2009, 719-722.
[21] Huang, M.F., Lou, W.J., Chan, C.M. and Bao, S. (2012) Peak Factors of Non-Gaussian Wind Forces on a Complex-Shaped Tall Building. The Structural Design of Tall and Special Buildings, 22, 1105-1118.
http://dx.doi.org/10.1002/tal.763
[22] Winterstein, S.R. (1988) Nonlinear Vibration Models for Extremes and Fatigue. Journal of Engineering Mechanics, 114, 1772-1790.
[23] Huang, M.F., Chan, C.M., Kwok, K.C.S. and Lou, W.J. (2009) A Peak Factor for Predicting Non-Gaussian Peak Resultant Response of Wind-Excited Tall Buildings. Proceedings of the 7th Asia-Pacific Conference on Wind Engineering, Taipei, 8-12 November 2009, 423-426.
[24] Huang, M.F., Chan, C.M., Lou, W.J. and Kwok, K.C.S. (2012) Statistical Extremes and Peak Factors in Wind Induced Vibration of Tall Buildings. Journal of Zhejiang University, Science A (Applied Physics and Engineering), 13, 18-32.