JAMP  Vol.3 No.11 , November 2015
Kadomstev-Petviashvilli-Burgers (KPB) Equation in a Five Component Cometary Plasma with Kappa Described Electrons and Ions
ABSTRACT
We investigate the existence of Ion-Acoustic solitary/shock waves in a five component cometary plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen ions, hot electrons and cold electrons. The KPB equation is derived for the system; its solution is plotted for different kappa values, as well as for the temperature ratios of ions. It is found that the amplitude of solitary structure increases with increasing kappa values and negatively charged oxygen ion densities. As the temperature of the positively charged oxygen ions increases, the amplitude of solitary wave also increases. We have also studied the dependence of coefficients of the KPB equation on physical parameters relevant to comet Halley.

Cite this paper
Michael, M. , Gopinathan, S. , Sebastian, S. , Willington, N. , Varghese, A. , Gangadharan, R. and Venugopal, C. (2015) Kadomstev-Petviashvilli-Burgers (KPB) Equation in a Five Component Cometary Plasma with Kappa Described Electrons and Ions. Journal of Applied Mathematics and Physics, 3, 1431-1442. doi: 10.4236/jamp.2015.311171.
References
[1]   Sagdeev, R.Z. and Leontovich, M.A. (1966) Cooperative Phenomena and Shock Waves in Collisionless Plasmas. Reviews of Plasma Physics, 4, 23.

[2]   Ikezi, H., Taylor, R. and Baker, D. (1970) Formation and Interaction of Ion-Acoustic Solitions. Physical Review Letters, 25, 11.
http://dx.doi.org/10.1103/PhysRevLett.25.11

[3]   Mamun, A.A. and Shukla, P.K. (2002) Cylindrical and Spherical Dust Ion-Acoustic Solitary Waves. Physics of Plasmas, 9, 1468.
http://dx.doi.org/10.1063/1.1458030

[4]   Xue, J.K. (2003) Cylindrical and Spherical Dust-Ion Acoustic Shock Waves. Physics of Plasmas, 10, 4893.
http://dx.doi.org/10.1063/1.1622954

[5]   Sahu, B. and Roychoudhury, R. (2007) Quantum Ion Acoustic Shock Waves in Planar and Nonplanar Geometry. Physics of Plasmas, 14, 072310.
http://dx.doi.org/10.1063/1.2753741

[6]   Shukla, P.K. and Mamun, A.A. (2003) Solitons, Shocks and Vortices in Dusty Plasmas. New Journal of Physics, 5, 17.
http://dx.doi.org/10.1088/1367-2630/5/1/317

[7]   Kadomstev, B.B and Petviashvilli, V.I. (1970) On the Stability of Solitary Waves in Weakly Dispersing Media. Soviet Physics Doklady, 15, 539.

[8]   Moslem, W.M. (2006) Dust-Ion-Acoustic Solitons and Shocks in Dusty Plasmas. Chaos, Solitons & Fractals, 28, 994-999.
http://dx.doi.org/10.1016/j.chaos.2005.08.150

[9]   Masood, W., Imtiaz, N. and Siddiq, M. (2009) Ion Acoustic Shock Waves in Dissipative Electron Positron-Ion Plasmas with Weak Transverse Perturbations. Physica Scripta, 80, 015501.
http://dx.doi.org/10.1088/0031-8949/80/01/015501

[10]   Pakzad, H.R. (2011) Ion Acoustic Shock Waves in Dissipative Plasma with Superthermal Electrons and Positrons. Astrophysics and Space Science, 331, 169-174.
http://dx.doi.org/10.1007/s10509-010-0424-9

[11]   Pakzad, H.R. and Javidan, K. (2011) Ion Acoustic Shock Waves in Weakly Relativistic and Dissipative Plasmas with Non Thermal Electrons and Thermal Positrons. Astrophysics and Space Science, 331, 175-180.
http://dx.doi.org/10.1007/s10509-010-0444-5

[12]   Chatterjee, P., Ghosh, D.K. and Sahu, B. (2012) Planar and Nonplanar Ion Acoustic Shock Waves with Nonthermal Electrons and Positrons. Astrophysics and Space Science, 339, 261-267.
http://dx.doi.org/10.1007/s10509-012-1011-z

[13]   Ghosh, D.K., Chatterjee, P., Mandal, P.K. and Sahu, B. (2013) Nonplanar Ion-Acoustic Shocks in Electron-Positron-Ion Plasmas: Effect of Superthermal Electrons. Pramana, 81, 491-501.
http://dx.doi.org/10.1007/s12043-013-0588-2

[14]   Hussain, S., Ur-Rehman, H. and Mahmood, S. (2014) Two Dimensional Ion Acoustic Shocks in Electron-Positron-Ion Plasmas with Warm Ions, and q-Nonextensive Distributed Electrons and Positrons. Astrophysics and Space Science, 351, 573-580.
http://dx.doi.org/10.1007/s10509-014-1868-0

[15]   Sultana, S., Kourakis, I., Saini, N.S. and Hellberg, M.A. (2010) Oblique Electrostatic Excitations in a Magnetized Plasma in the Presence of Excess Superthermal Electrons. Physics of Plasmas, 17, Article ID: 032310.
http://dx.doi.org/10.1063/1.3322895

[16]   Kourakis, I., Sultana, S. and Hellberg, M.A. (2012) Dynamical Characteristics of Solitary Waves, Shocks and Envelope Modes in Kappa-Distributed Non-Thermal Plasmas: An Overview. Plasma Physics and Controlled Fusion, 54, Article ID: 124001.
http://dx.doi.org/10.1088/0741-3335/54/12/124001

[17]   Sultana, S., Kourakis, I. and Hellberg, M.A. (2012) Oblique Propagation of Arbitrary Amplitude Electron Acoustic Solitary Waves in Magnetized Kappa-Distributed Plasmas. Plasma Physics and Controlled Fusion, 54, Article ID: 105016.
http://dx.doi.org/10.1088/0741-3335/54/10/105016

[18]   Sultana, S. and Kourakis, I. (2012) Electron-Scale Electrostatic Solitary Waves and Shocks: The Role of Superthermal Electrons. The European Physical Journal D, 66, 100.
http://dx.doi.org/10.1140/epjd/e2012-20743-y

[19]   Sultana, S. and Mamun, A.A. (2014) Linear and Nonlinear Propagation of Ion-Acoustic Waves in a Multi-Ion Plasma with Positrons and Two-Temperature Superthermal Electrons. Astrophysics and Space Science, 349, 229-238.
http://dx.doi.org/10.1007/s10509-013-1634-8

[20]   Masood, W., Mahmood, S. and Imtiaz, N. (2009) Electrostatic Shocks and Solitons in Pair-Ion Plasmas in a Two-Dimensional Geometry. Physics of Plasmas, 16, Article ID: 122306.
http://dx.doi.org/10.1063/1.3272666

[21]   Masood, W. and Rizvi, H. (2012) Two Dimensional Nonplanar Evolution of Electrostatic Shock Waves in Pair-Ion Plasmas. Physics of Plasmas, 19, Article ID: 012119.
http://dx.doi.org/10.1063/1.3677779

[22]   Samanta, U.K., Chatterjee, P. and Mej, M. (2013) Soliton and Shocks in Pair Ion Plasma in Presence of Superthermal Electron. Astrophysics and Space Science, 345, 291-296.
http://dx.doi.org/10.1007/s10509-013-1403-8

[23]   Vasyliunas, V.M. (1968) Low-Energy Electrons on the Day Side of the Magnetosphere. Journal of Geophysical Research, 73, 7519-7523.
http://dx.doi.org/10.1029/JA073i023p07519

[24]   Ipavich, F.M., Galvin, A.B., Gloeckler, G., Hovestadt, D., Klecker, B. and Scholer, M. (1986) Comet Giacobini-Zinner: Insitu Observations of Energetic Heavy Ions. Science, 232, 366-369.
http://dx.doi.org/10.1126/science.232.4748.366

[25]   Coplan, M.A., Ogilvie, K.W., A’Hearn, M.F., Bochsler, P. and Geiss, J. (1987) Ion Composition and Upstream Solar Wind Observations at Comet Giacobini-Zinner. Journal of Geophysical Research, 92, 39-46.
http://dx.doi.org/10.1029/JA092iA01p00039

[26]   Chaizy, P., Reme, H., Sauvaud, J.A., d’Uston, C., Lin, R.P., Larson, D.E., Mitchell, D.L., Zwickl, R.D., Baker, D.N., Bame, S.J., Feldman, W.C., Fuselier, S.A., Huebner, W.F., McComas, D.J. and Young, D.T. (1991) Negative Ions in the Coma of Comet Halley. Nature, 349, 393-396.
http://dx.doi.org/10.1038/349393a0

[27]   Zwickl, R.D., Baker, D.N., Bame, S.J., Feldman, W.C., Fuselier, S.A., Huebner, W.F. and Young, D.T. (1986) Three Component Plasma Electron Distribution in the Intermediate Ionized Coma of Comet Giacobini-Zinner. Geophysical Research Letters, 13, 401-404.
http://dx.doi.org/10.1029/GL013i004p00401

[28]   Bhardwaj, A. (2003) On the Solar EUV Deposition in the Inner Coma of Comets with Large Gas Production Rates. Geophysical Research Letters, 30, 2244.
http://dx.doi.org/10.1029/2003GL018495

[29]   Coates, A.J. (1995) Heavy Ion Effects on Cometary Shocks. Advances in Space Research, 15, 403-413.
http://dx.doi.org/10.1016/0273-1177(94)00125-K

[30]   Voelzke, M.R. and Izaguirre, L.S. (2012) Morphological Analysis of the Tail Structures of Comet P/Halley 1910 II. Planetary and Space Science, 65, 104-108.
http://dx.doi.org/10.1016/j.pss.2012.02.005

[31]   Dev, A.N., Sarma, J., Deka, M.K., Misra, A.P. and Adhikary, N.C. (2014) Kadomtsev-Petviashvili (KP) Burgers Equation in Dusty Negative Ion Plasmas: Evolution of Dust-Ion Acoustic Shocks. Communications in Theoretical Phys, 62, 875-880.
http://dx.doi.org/10.1088/0253-6102/62/6/16

[32]   Malfliet, W. (1992) Solitary Wave Solutions of Nonlinear Wave Equations. American Journal of Physics, 60, 650.
http://dx.doi.org/10.1119/1.17120

[33]   Malfliet, W. (2004) The Tanh Method: A Tool for Solving Certain Classes of Nonlinear Evolution and Wave Equations. Journal of Computational and Applied Mathematics, 164, 529-541.
http://dx.doi.org/10.1016/s0377-0427(03)00645-9

[34]   Brinca, A.L. and Tsurutani, B.T. (1987) Unusual Characteristics of the Electromagnetic Waves Excited by Cometary New Born Ions with Large Perpendicular Energies. Astronomy & Astrophysics, 187, 311-319.

 
 
Top