FNS  Vol.6 No.15 , November 2015
Characterization of Two Different Stumps of Spirulina platensis Drying: Assessment of Water Transport Coefficient
Abstract: The sorption behaviour and water transport mechanisms inside Spirulina platensis samples were experimentally analysed during isothermal drying at 25℃ and 50℃. Two different products grown in semi-industrial farms from Burkina Faso and France with initial water contents respectively of the range from 2.73 kg w /kg dm to 3.12 kg w /kg dm were characterized. A novel procedure has been developed to determine the water content profiles inside samples during isothermal drying. At both temperatures, experimental results underlined that the physical properties of Spirulina are not sensitive to the geographical origin, Burkina-Faso or France. To keep Spirulina at an water activity below 0.6 in order to preserve it from micro-organisms development, sorption isotherm curves show that a sufficient requirement is to lower the water content until an upper limit of w = 0.075 db. The evolution of water transport coefficient as a function of water content highlights a monotonous exponential dependence with a transport coefficient ranging from 1.70 × 10–10 to 94 × 10–10 m2/s. The contribution of solid phase shrinkage to the transport of water is negligible for the last drying steps.
Cite this paper: Tiendrebeogo, E. , Dissa, A. , Cherblanc, F. , Youm, I. , Bénet, J. , Compaoré, A. and Koulidiati, J. (2015) Characterization of Two Different Stumps of Spirulina platensis Drying: Assessment of Water Transport Coefficient. Food and Nutrition Sciences, 6, 1437-1449. doi: 10.4236/fns.2015.615148.

[1]   Bouraout, M., Richard, P. and Durance, T. (1994) Microwave and Convective Drying of Potato Slices. Journal of Food Process Engineering, 17, 353-363.

[2]   Yongsawatdigul, J. and Gunasekaran, S. (1996) Microwave Vaccum Drying of Cranberries Part II. Journal of Food Processing and Preservation, 20, 145-156.

[3]   Feng, H. and Tang, J. (1998) Microwave Finish Drying of Diced Apples in a Spouted Bed. Journal of Food Science, 63, 679-683.

[4]   Maskan, M. (2001) Kinetics of Colour Change of Kiwifruits during Hot Air and Microwave Drying. Journal of Food Engineering, 48, 169-175.

[5]   Gowen, A.A., Abu-Ghannam, N., Frias, J. and Oliveira, J. (2008) Modeling Dehydratation and Rehydratation of Cooked Soybeans Subjected to Combined Microwave-Hot-Air Drying. Innovative Food Science et Emerging Technologies, 9, 129-137.

[6]   Tsarahevitra, J., Loc, C. and Marie-Jose, L. (2004) Adaptation des souches de spiruline du sud demadagascar à la culture en eau de mer. In: Colloque international sur les cyanobactéries pour la santé, la science et le développement, Ile des Embiez.

[7]   Enzing, C., Ploeg, M., Barbosa, M. and Sijtsma, L. (2014) Microalgae Based Products for the Food and Feed Sector: An Outlook for Europe. IPTS Institute for Prospective technological Studies, JRC, Seville.

[8]   Dissa, A., Desmorieux, H., Savadogo, P., Segda, B.G. and Koulidiati, J. (2010) Shrinkage, Porosity and Density Behaviour during Convective Drying of Spirulina. Journal of Food Engineering, 97, 410-418.

[9]   Bonazzi, C., Dumoulin, E. and Bimbenet, J.-J. (2008) Le séchage des produits alimentaires. Industrie Alimentaire Agricole, 125, 12-22.

[10]   Desmorieux, H. and Hernandez, F. (2004) Biochemical and Physical Criteria of Spirulina after Different Drying Processes. Proceedings of the 14th International Drying Symposium (IDS 2004), Sào Paulo, 22-25 August 2004, 900-907.

[11]   Desmorieux, H. and Decaen, N. (2005) Convective Drying of Spirulina in Thin Layer. Journal of Food Engenering, 66, 497-503.

[12]   Oliveira, E., Rosa, G., Moraes, M. and Pinto, L. (2009) Characterization of Thin Layer Drying of Spirulina Platensis Utilizing Perpendicular Air Ow. Bioresource Technology, 100, 1297-1303.

[13]   Mendiola, J.A., Marin, F.R., Hernandez, S.F., Arredondo, B.O., Senorans, F.J. and Ibanez, E. (2005) Characterization via LCDAD and LC-MS/MS of Supercritical Fluid Antioxidant Extracts of Spirulina platensis Microalga. Journal of Separation Science, 28, 1031-1038.

[14]   Desmorieux, H., Madiouli, J., Herraud, C. and Mouaziz, H. (2010) Effects of Size and Form of Arthrospira Spirulina Biomass on the Shrinkage and Porosity during Drying. Journal of Food Engineering, 100, 585-595.

[15]   Lagunez-Rivera, L., Ruiz-Lpez, I.I., Garca-Alvarado, M.A. and Salgado-Cervantes, M.A. (2007) Mathematical Simulation of the Effective Diffusivity of Water during Drying of Papaya. Drying Technology, 25, 1633-1638.

[16]   Trujillo, F.J., Wiangkaew, C. and Pham, Q.T. (2007) Drying Modeling and Water Diffusivity in Beef Meat. Journal of Food Engenering, 78, 74-85.

[17]   Hernandez-Diaz, W., Ruiz-Lopez, I., Salgado-Cervantes, M., Rodriguez-Jimenes, G. and Garcia-Alvarado, M. (2008) Modeling Heat and Mass Transfer during Drying of Green Coffee Beans Using Prolate Spheroidal Geometry. Journal of Food Engineering, 86, 1-9.

[18]   Ramirez-Martinez, A., Salgado-Cervantes, M., Rodriguez-Jimenes, G., Garcia-Alvarado, M., Cherblanc, F. and Bénet, J.-C. (2013) Water Transport in Parchment and Endosperm of Coffee Bean. Journal of Food Engineering, 114, 375-383.

[19]   Ouoba, K.H., Zougmor, F., Sam, R., Toguyeni, A. and Desmorieux, H. (2014) Characterization of Okra Convective Drying, Inuence of Maturity. Food and Nutrition Sciences, 5, 590-597.

[20]   Pinto, L.A.A. and Tobinaga, S. (2006) Diffusive Model with Shrinkage in the Thin-Layer Drying of Fish Muscles. Drying Technology, 24, 509-516.

[21]   Ruiz-Lopez, I., Ruiz-Espinosa, E., Arellanes-Lozada, P., Barcenas-Pozos, M. and Garca-Alvarado, M. (2012) Analytical Model for Variable Moisture Diffusivity Estimation and Drying Simulation of Shrinkable Food Products. Journal of Food Engineering, 108, 427-435.

[22]   Crank, J. (1975) The Mathematics of Diffusion. Oxford University Press, London.

[23]   Dissa, A., Compaore, A., Tiendrebeogo, E. and Koulidiati, J. (2014) An Effective Moisture Diffusivity Model Deduced from Experiment and Numerical Solution of Mass Transfer Equations for a Shrinkable Drying Slab of Microalgae Spirulina. Drying Technology, 32, 1231-1244.

[24]   Tharwat, A.A. and Alturki, S.M. (2014) Spirulina Platensis Production Using Date Palm Substances and Low Cost Media in the Climatic Conditions of Saudi Arabia. Advances in Environmental Biology, 8, 2350-2356.

[25]   NFX15-119 (1999) Mesure de l’humidité de l’air-Générateurs d’air humide à solutions salines pour l’étalonnage des hygromètres. Association Franccedil;aise de Normalisation (AFNOR).

[26]   Chemkhi, S., Zagrouba, F. and Bellagi, A. (2004) Mathematical Model for Drying of Highly Shrinkable Media. Drying Technology, 22, 1023-1039.

[27]   Palou, E., Lpez-Malo, A. and Argaiz, A. (1997) Effect of Temperature on the Moisture Sorption Isotherms of Some Cookies and Corn Snacks. Journal of Food Sciences, 31, 85-93.

[28]   Timmermann, E.O., Chirife, J. and Iglesias, H.A. (2001) Water Sorption Isotherms of Foods and Foodstuffs: Bet or Gab Parameters? Journal of Food Engenering, 48, 19-31.

[29]   Furmaniak, S., Terzyk, A. and Gauden, P. (2007) The General Mechanism of Water Sorption on Foodstuffs—Importance of the Multitemperature Fitting of Data and the Hierarchy of Models. Journal of Food Engenering, 82, 528-535.

[30]   Dissa, A., Desmorieux, H., Bathiebo, J. and Koulidiati, J. (2008) Convective Drying Characteristics of Amelie Mango (Mangifera indica l. cv. “Amelie”) with Correction for Shrinkage. Journal of Food Engenering, 88, 429-437.

[31]   Anoua, M., Ramirez-Martinez, A., Cherblanc, F. and Bénet, J.-C. (2014) The Use of Chemical Potential to Describe Water Transfer in Complex Media with Strong Solid-Liquid Bonding. Transport in Porous Media, 102, 111-122.

[32]   Doymaz, I. (2002) Hot-Air Drying Characteristics of Red Pepper. Journal of Food Engineering, 55, 331-335.

[33]   Carmo, J. and Lima, A. (2005) Drying of Lentil Including Shrinkage: A Numerical Simulation. Drying Technology, 23, 1977-1992.

[34]   Doymaz, I. (2012) Air-Drying Characteristics, Effective Moisture Diffusivity and Activation Energy of Grape Leaves. Journal of Food Processing and Preservation, 36, 161-168.

[35]   Mihoubi, D., Zagrouba, F., Vaxelaire, J., Bellagi, A. and Roques, M. (2004) Transfer Phenomena during the Drying of a Shrinkable Product: Modeling and Simulation. Drying Technology, 22, 91-109.

[36]   Hawladsr, M., Ho, J. and Qing, Z. (1999) A Mathematical Model for Drying of Shrinking Materials. Drying Technology, 17, 27-47.

[37]   Couture, F., Laurent, S. and Roques, M.A. (2007) Drying of Two-Phase Media: Simulation with Liquid Pressure as Driven Force. AIChE Journal, 53, 1401-1413.

[38]   Doymaz, I. (2004) Convective Air Drying Characteristics of Thin Layer Carrots. Journal of Food Engineering, 61, 359-364.

[39]   Bialobrzewski, I. (2006) Simultaneous Heat and Mass Transfer in Shrinkable Apple Slab during Drying. Drying Technology, 24, 551-559.

[40]   Janjai, S., Bala, B.K., Tohsing, K., Mahayothee, B., Haewsungcharern, M., Muhlbauer, W. and Muller, J. (2006) Equilibrium Moisture Content and Heat of Sorption of Longan (Dimocarpus longan lour.). Drying Technology, 24, 1691-1696.

[41]   Wolf, W., Spiess, W. and Jung, G. (1973) The Water Vapor Sorption Isotherms of Foodstsuffs. Lebensmittel-Wissenschaft und Technologie, 6, 94-96.

[42]   Iglesia, H.A. and Chirife, J. (1982) Handbook of Food Isotherms, Water Sorption Parameters for Food and Food Components. Academic Press, Waltham.

[43]   Bénet, J.-C., Ramirez-Martinez, A., Ouedraogo, F. and Cherblanc, F. (2012) Measurement of the Chemichal Potential of a Liquid in Porous Media. Journal of Porous Media, 15, 1019-1029.

[44]   Henrikson, R. (2000) Earthfood Spirulina. Earthrise, Ronore Enterprises.

[45]   Auria, R. and Bénet, J.-C. (1990) Transport de l’eau dans une feuille de caoutchouc naturel pendantla période de séchage à vitesse décroissante. International Journal of Heat and Mass Transfer, 33, 1885-1894.

[46]   Mrani, I., Bénet, J. and Fras, G. (1995) Transport of Water in a Biconstituent Elastic Medium. Applied Mechanics Reviews, 48, 717-721.

[47]   Mrani, I. and Bénét, J.-C. (2005) Relaxation de contraintes et fissurations induites par une redistribution d’eau en milieu biphasique elastique. Mécanique et Industries, 6, 529-538.

[48]   Ketelaars, A., Pel, L., Coumans, W. and Kerkhof, P. (1995) Drying Kinetics: A Comparison of Diffusion Coefficients from Moisture Concentration Profiles and Drying Curves. Chemical Engineering Science, 50, 1187-1191.