[1] Rui, H., Liu, Y. and Whinston, A. (2013) Whose and What Chatter Matters? The Effect of Tweets on Movie Sales. Decision Support Systems, 55, 863-870.
[2] Bollen, J., Mao, H. and Zeng, X.-J. (2011) Twitter Mood Predicts. Journal of Computer Science, 2, 1-8.
[3] Jansen, B.J., Zhang, M., Sobel, K. and Chowdury, A. (2009) Twitter Power: Tweets as Electronic Word of Mouth. Journal of the American Society for Information Science and Technology, 60, 2169-2188.
[4] Wang, H., Can, D., Kazemzadeh, A., Bar, F. and Narayanan, S. (2012) A System for Real-Time Twitter Sentiment Analysis of 2012 U.S. Presidential Election Cycle. Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, Jeju, 115-120.
[5] Bifet, A. and Frank, E. (2010) Sentiment Knowledge Discovery in Twitter Streaming Data. Discovery Science, 1-15.
[6] Go, A., Bhayani, R. and Huang, L. (2009) Twitter Sentiment. Stanford Digital Library Technologies Project.
[7] University of Michigan (2011) UMICH SI650—Sentiment Classification.
https://inclass.kaggle.com/c/si650winter11/data
[8] Sanders, N.J. (2011) Sanders-Twitter Sentiment Corpus. Sanders Analytics LLC.
[9] Bird, S., Loper, E. and Klein, E. (2009) Natural Language Processing with Python. O’Reilly Media Inc.
[10] Le, Q. and Mikolov, T. (2014) Distributed Representations of Sentences and Documents. CoRR, vol. abs/1405.4053.
[11] Miklov, T., Chen, K., Corrado, G. and Dean, J. (2013) Efficient Estimation of Word Representations in Vector Space.
http://arxiv.org/abs/1301.3781
[12] Miklov, T., Sutskever, I., Chen, K., Corrado, G.S. and Dean, J. (2013) Distributed Representations of Words and Phrases and Their Compositionality. In: Advances in Neural Information Processing Systems, Morgan Kaufmann Publishers Inc., San Francisco, 3111-3119.
[13] Mikolov, T., Yih, W.-T. and Zweig, G. (2013) Linguistic Regularities in Continuous Space Word Representations. HLT-NAACL, 746-751.
[14] Huang, P.S., He, X., Gao, J., Deng, L., Acero, A. and Heck, L. (2013) Learning Deep Structured Semantic Models for Web Search Using Clickthrough Data. Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, San Francisco, 27 October-1 November 2013, 2333-2338.
http://dx.doi.org/10.1145/2505515.2505665
[15] Shen, Y., He, X., Gao, J., Deng, L. and Mesnil, G. (2014) A Latent Semantic Model with Convolutional-Pooling. Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, Shanghai, 3-7 November 2014, 101-110.
[16] Gao, J., Pantel, P., Gamon, M., He, X., Deng, L. and Shen, Y. (2014) Modeling Interestingness with Deep Neural Networks. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, 25-29 October 2014.
http://dx.doi.org/10.3115/v1/D14-1002
[17] Hall, M.A. (1999) Correlation-Based Feature Selection for Machine Learning. PhD Dissertation, University of Waikato, Waikato.
[18] Liu, H. and Setiono, R. (1995) Chi2: Feature Selection and Discretization of Numeric Attributes. Proceedings of the IEEE 7th International Conference on Tools with Artificial Intelligence, Herndon, 5-8 November 1995, 388-391.
[19] Statistica (2015) Number of Active Twitter Users in the United States from 2010 to 2014, by Gender.
http://www.statista.com/statistics/238715/number-of-active-twitter-users-in-the-united-states-by-gender/
[20] Beevolve (2012) An Exhaustive Study of Twitter Users across the World.
http://www.beevolve.com/twitter-statistics/#a1
[21] Miller, Z., Dickinson, B. and Hu, W. (2012) Gender Prediction on Twitter Using Stream Algorithms with N-Gram Character Features. International Journal of Intelligence Science, 2, 143-148.
http://dx.doi.org/10.4236/ijis.2012.224019
[22] Dietrick, W., Miller, Z., Valyou, B., Dickinson, B., Munson, T. and Hu, W. (2012) Gender Identification on Twitter Using the Modified Balanced Winnow. Communications and Network, 4, 189-195.
http://dx.doi.org/10.4236/cn.2012.43023
[23] Porter, M.F. (1980) An Algorithm for Suffix Stripping. Program, 14, 130-137.
http://dx.doi.org/10.1108/eb046814
[24] Pedregosa, F., et al. (2011) Scikit-Learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825-2830.