[1] Alhaidari, G.A.D. (2007) Representation Reduction and Solution Space Contraction in Quasi-Exactly Solvable Systems. Journal of Physics A: Mathematical and Theoretical, 40, 6305-6328.
http://dx.doi.org/10.1088/1751-8113/40/24/004
[2] Asgarifar, S. and Goudarzi, H. (2013) Exact Solutions of the Manning-Rosen Potential Plus a Ring-Shaped Like Potential for the Dirac Equation: Spin and Pseudospin Symmetry. Physica Scripta, 87, 025703.
http://dx.doi.org/10.1088/0031-8949/87/02/025703
[3] Liu, K., Shi, W. and Wu, X.Y. (2013) An Extended Discrete Gradient Formula for Oscillatory Hamiltonian Systems. Journal of Physics A: Mathematical and Theoretical, 46, 165203.
[4] Moler, C.B. and Stewart, G.W. (1973) An Algorithm for Generalized Matrix Eigenvalue Problems. SIAM Journal on Numerical Analysis, 10, 241.
http://dx.doi.org/10.1137/0710024
[5] Suslov, S.K. (2010) Dynamical Invariants for Variable Quadratic Hamiltonians. Physica Scripta, 81, 055006.
[6] Pearman, C.M. (2014) An Excel-Based Implementation of the Spectral Method of Action Potential Alternans Analysis. Physiological Reports, 2, e12194.
http://dx.doi.org/10.14814/phy2.12194
[7] Roy, A.K. (2014) Studies on the Bound-State Spectrum of Hyperbolic Potential. Few-Body Systems, 55, 143-150.
http://dx.doi.org/10.1007/s00601-013-0767-1
[8] Bahlouli, H. and Alhaidari, A.D. (2010) Extending the Class of Solvable Potentials: III. The Hyperbolic Single Wave. Physica Scripta, 81, 025008.
http://dx.doi.org/10.1088/0031-8949/81/02/025008
[9] Alhaidari, A.D. and Bahlouli, H. (2009) Two New Solvable Potentials. Journal of Physics A: Mathematical and Theoretical, 42, No. 26.
http://dx.doi.org/10.1088/1751-8113/42/26/262001
[10] Ciftci, H., Hall, R.L. and Saad, N. (2003) Asymptotic Iteration Method for Eigenvalue Problems. Journal of Physics A: Mathematical and Theoretical, 36, 11807.
http://dx.doi.org/10.1088/0305-4470/36/47/008
[11] Ciftci, H., Hall, R.L. and Saad, N. (2005) Construction of Exact Solutions to Eigenvalue Problems by the Asymptotic Iteration Method. Journal of Physics A: Mathematical and General, 38, 1147-1155.
http://dx.doi.org/10.1088/0305-4470/38/5/015
[12] Saad, N., Hall, R.L. and Ciftci, H. (2006) Sextic Anharmonic Oscillators and Orthogonal Polynomials. Journal of Physics A: Mathematical and General, 39, 8477-8486.
http://dx.doi.org/10.1088/0305-4470/39/26/014
[13] Ozer, O. and Roy, P. (2009) The Asymptotic Iteration Method Applied to Certain Quasinormal Modes and Non Hermitian Systems. Central European Journal of Physics, 7, 747-752.
[14] Sous, A.J. (2006) Exact Solutions for a Hamiltonian Potential with Two-Parameters Using the Asymptotic Iteration Method. Chinese Journal of Physics, 44, 167-171.
http://psroc.phys.ntu.edu.tw/cjp/download.php?type=paper&vol=44&num=3&page=167
[15] Soylu, A., Bayrak, O. and Boztosun, I. (2007) An Approximate Solution of Dirac-Hulthén Problem with Pseudospin and Spin Symmetry for Any. Journal of Mathematical Physics, 48, 082302.
http://dx.doi.org/10.1063/1.2768436
[16] Barakat, T. (2005) The Asymptotic Iteration Method for the Eigenenergies of the Anharmonic Oscillator Potential . Physics Letters A, 344, 411-417.
http://dx.doi.org/10.1016/j.physleta.2005.06.081
[17] Sous, A.J. (2006) Solution for the Eigenenergies of the Sextic Anharmonic Oscillator . Modern Physics Letters A, 21, 1675.
[18] Sous, A.J. and EL-Kawni, M.I. (2009) General Eigenvalue Problems with Unbounded Potential from Below. International Journal of Modern Physics A, 24, 4169.
http://dx.doi.org/10.1142/s0217751x09044280