MSCE  Vol.3 No.11 , November 2015
Synthesis and Structural Characterization of CSH-Phases in the Range of C/S = 0.41 - 1.66 at Temperatures of the Tobermorite Xonotlite Crossover
Calcium-Silicate-Hydrate-phases (CSH-phases) are important binding agents of building materials. The synthesis of CSH phases and their structural characterization was done to investigate the crystallization in dependence of an increasing CaO/SiO2 ratio (C/S ratios) from 0.41 up to 1.66 at temperatures in the crossover region of tobermorite to xonotlite (180℃ and 230℃). Parallel runs with the same C/S ratio but on the one hand with constant mass of quartz and variation of lime and on the other hand under reverse conditions (constant mass of lime but variable amounts of quartz) were performed at both temperatures. The aim was to clarify the connections of crystallization mechanism and kinetics of phase formation with structure, crystallinity and morphology of the CSH’s in the mentioned C/S ratio for both temperatures in the tobermorite-xonotlite crossover region. The parallel experiments with different mass ratios of the educts are important to study the influence of time evaluation of supersaturation within the solution under the peculiarities of the retrograde solubility of lime but accelerated solubility of quartz. The products were characterized by XRD, SEM/EDX, FTIR and 29Si MAS NMR spectroscopy (using the Q-site nomenclature [1]). The experiments could clarify some important connections of crystallization process and the reaction pathway.

Cite this paper
Hartmann, A. , Schulenberg, D. and Buhl, J. (2015) Synthesis and Structural Characterization of CSH-Phases in the Range of C/S = 0.41 - 1.66 at Temperatures of the Tobermorite Xonotlite Crossover. Journal of Materials Science and Chemical Engineering, 3, 39-55. doi: 10.4236/msce.2015.311006.
[1]   Yu, P., Kirkpatrick, R.J., Poe, B., McMillan, P.F. and Cong, X.D. (1999) Structure of Calcium Silicate Hydrate (C-S-H): Near-, Mid-, and Far-Infrared Spectroscopy. Journal of the American Ceramic Society, 82, 742-748.

[2]   Mörtel, H. (1980) Mineralbestand, Gefüge und physikalische Eigenschaften von Kalksandsteinen. Fortschritte der Mineralogie, 58, 37-67.

[3]   Shaw, S., Clark, S.M. and Henderson, C.M.B. (2000) Hydrothermal Formation of the Calcium Silicate Hydrates, Tobermorite (Ca5Si6O16(OH)2.4H2O and Xonotlite (Ca6Si6O17(OH)2): An in Situ Synchrotron Study. Chemical Geology, 167, 129-140.

[4]   Gundlach, H. (1973) Dampfgehärtete Baustoffe. Bauverlag GmbH, Wiesbaden und Berlin.

[5]   Hartmann, A. (2004) Untersuchungen zum Kristallisationsverhalten und zur Morphologie von 11 Å Tobermorit in Abhängigkeit der Reaktivität der Kieselsäurequelle und dem Ionenbestand der Hydrothermallösung. Dissertation, Fachbereich Geowissenschaften und Geographie, Universität Hannover, Hannover.

[6]   Hartmann, A., Buhl, J.-C. and van Breugel, K. (2007) Structure and Phase Investigations on Crystallization of 11 Å Tobermorite in Lime Sand Pellets. Cement and Concrete Research, 37, 21-31.

[7]   Hartmann, A., Schulenberg, D. and Buhl, J.-C. (2015) Investigation of the Transition Reaction of Tobermorite to Xonotlite under Influence of Additives. Advances in Chemical Engineering, 5, 197-214.

[8]   Megaw, H.D. and Kelsey, C.H. (1956) Crystal Structure of Tobermorite. Nature, 177, 390-391.

[9]   Hamid, S.A. (1981) The Crystal Structure of the 11 Å Tobermorite Ca2,25[Si3O7,5(OH)1,5].1H2O. Zeitschrift für Kristallographie, 154, 189-198.

[10]   Merlino, S., Bonacarssi, E. and Armbruster, T. (1999) Tobermorites: Their Real Structure and Order-Disorder (OD) Character. American Mineralogist, 84, 1613-1621.

[11]   Merlino, S., Bonacarssi, E. and Armbruster, T. (2000) The Real Structures of Clinotobermorite and Tobermorite 9 Å: OD Character, Polytypes, and Structural Relationships. European Journal of Mineralogy, 12, 411-429.

[12]   Merlino, S., Bonacarssi, E. and Armbruster, T. (2001) The Real Structure of Tobermorite 11 A Normal and Anormalous Forms, OD Character and Polytypic Modifications. European Journal of Mineralogy, 13, 577-590.

[13]   Mamedov, K.S. and Belov, N.V. (1955) Structure of Xonotlite Ca6Si6O17(OH)2. Doklady Akademii Nauk SSSR, 104, 615-618.

[14]   Kudoh, Y. and Tukeuchi, Y. (1979) Polytypism of Xonotlite: (I) Structure of an A-1 Polytype. Mineralogical Journal, 9, 349-373.

[15]   Hejny, C. and Armbruster, T. (2001) Polytypism in Xonotlite Ca6Si6O17(OH)2. Zeitschrift für Kristallographie, 216, 396-408.

[16]   Churakov, S.V. and Mandaliev, P. (2008) Structure of the Hydrogen Bonds and Silica Defects in the Tetrahedral Double Chain of Xonotlite. Cement and Concrete Research, 38, 300-311.

[17]   Heller, L. (1953) X-Ray Investigation of Hillebrandite. Mineralogical Magazine, 30, 150-154.

[18]   Dai, Y. and Post, J.E. (1995) Crystal Structure of Hillebrandite: A Natural Analogue of Calcium Silicate Hydrate (CSH) Phases in Portland Cement. American Mineralogist, 80, 841-844.

[19]   Taylor, H.F.M. (1990) Cement Chemistry. Academic Press, London.

[20]   Winkler, A. and Wieker, W. (1979) Über Synthese, Aufbau und thermisches Verhalten von 11 Å—Tobermorit. Zeitschrift für anorganische und allgemeine Chemie, 451, 45-56.

[21]   Winkler, A. and Wieker, W. (1982) Zum Ablauf der Hydrothermalreaktion von CaO und Quarz in Suspension bei 190℃. Zeitschrift für anorganische und allgemeine Chemie, 490, 77-90.

[22]   Garbev, K. (2004) Struktur, Eigenschaften und quantitative Rietveldanalyse von hydrothermal kristallisierten Calciumsilikathydraten (C-S-H-Phasen). Dissertation, Wissenschaftliche Berichte, FZKA 6877, Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft.

[23]   Hartmann, A. and Buhl, J.-C. (2010) The Influence of Sucrose on the Crystallization in the System CaO-SiO2-C12H22O11-H2O under Hydrothermal Conditions. Materials Research Bulletin, 45, 396-402.

[24]   Hartmann, A., Khakhutov, M. and Buhl, J.-C. (2014) Hydrothermal Synthesis of CSH-Phases (Tobermorite) under Influence of Ca-Formate. Materials Research Bulletin, 51, 389-396.

[25]   Black, L., Garbev, K. and Stumm, A. (2009) Structure, Bonding and Morphology of Hydrothermally Synthesized Xonotlite. Advances in Applied Ceramics, 108, 138-144.

[26]   Spudulis, E., Savareika, V. and Spokankas, A. (2013) Influence of Hydrothermal Synthesis Condition on Xonotilite Crystal Morphology. Materials Science (Medziagotyra), 19, 190-196.

[27]   Meyer, K. (1977) Physikalisch-Chemische Kristallographie. Deutscher Vlg. für Grundstoffindustrie, Leipzig.

[28]   Maeshima, T., Noma, H., Sakiyama, M. and Mitsuda, T. (2003) Natural 1.1 and 1.4 nm Tobermorites from Fuka, Okayama, Japan: Chemical Analysis, Cell Dimensions, 29SiNMR and Thermal Behavior. Cement and Concrete Research, 33, 1515-1523.

[29]   Wieker, W., Grimmer, A.-R., Winkler, A., Mägi, M., Tarmak, M. and Lippmaa, E. (1982) Solid-State High-Resolution 29SiNMR Spectroscopy of Synthetic 14 Å, 11 Å and 9 Å Tobermorites. Cement and Concrete Research, 12, 333-339.

[30]   Lippmaa, E., Mägi, M., Samoson, A., Engelhardt, G. and Grimmer, A.-R. (1980) Structural Studies of Silicates by Solid-State High Resolution 29SiNMR. Journal of the American Chemical Society, 102, 4889-4893.

[31]   International Centre for Diffraction Data, 12 Campus Boulevard, Newton Square, Pennsylvania 190073-3272, USA.

[32]   Richardson, I.G., Skibsted, J., Black, L. and Kirkpatrick, R.J. (2010) Characterization of Cement Hydrate Phases by TEM, NMR and Raman Spectroscopy. Advances in Cement Research, 22, 233-248.

[33]   Fechtelkord, M. (2014) Communicated. Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum.