MSA  Vol.6 No.11 , November 2015
Humid Air Plasma Treatment of Birnessite Surface: Application to the Removal of Cochineal Red
ABSTRACT
The thin layers of birnessite (Mn7O13?5H2O) are exposed to reactive species gliding arc plasma in humid air, which induces the treatment of the thin layers surface. Plasma treatment thin layer of birnessite was used for the degradation of Cochineal Red. The experimental results showed that 95% of the CR solution was completely decolorized by thin layer of birnessite treated by plasma compared to 80% of the same solution after interaction of thin layer of birnessite untreated. The decay kinetics always follows a pseudo-first order reaction. The application of the humid air plasma for the surface treatment of thin layers of birnessite improves the efficiency of treatment for Cochineal Red degradation.

Cite this paper
Chouchene, W. and Bellakhal, N. (2015) Humid Air Plasma Treatment of Birnessite Surface: Application to the Removal of Cochineal Red. Materials Sciences and Applications, 6, 1014-1021. doi: 10.4236/msa.2015.611101.
References
[1]   Guyer, G.T. and Ince, N.H. (2003) Degradation and Toxicity Reduction of Textile Dyestuff by Ultrasound. Ultrasonics Sonochemistry, 10, 235-240.
http://dx.doi.org/10.1016/S1350-4177(03)00089-0

[2]   Sauer, T., Nero, G.C., Jose, H.J. and Moreira, R.F.P.M. (2002) Kinetics of Photocatalytic Degradation of Reactive Dyes in a TiO2 Slurry Reactor. Journal of Photochemistry and Photobiology A: Chemistry, 149, 147-154.
http://dx.doi.org/10.1016/S1010-6030(02)00015-1

[3]   Cisneros, R.L., Espinoza, A.G. and Litter, M.I. (2002) Photodegradation of an Azo Dye of the Textile Industry. Chemosphere, 48, 393.

[4]   Karkmaz, M., Puzenat, E., Guillard, C. and Herrmann, J.M. (2004) Photocatalyticdegradation of the Alimentary Azo Dye Amaranth: Mineralization of the Azo Group to Nitrogen. Applied Catalysis, 51, 183.

[5]   Brillas, E., Boye, B., Sirés, I., Garrido, J.A., Rodríguez, R.M., Arias, C., Cabot, P.L. and Comninellis, C. (2004) Electrochemical Destruction of Chlorophenoxy Herbicides by Anodic Oxidation and Electro-Fenton Using a Boron-Doped Diamond Electrode. Electrochimica Acta, 49, 4487-4496.
http://dx.doi.org/10.1016/j.electacta.2004.05.006

[6]   Kesraoui, A., Oturan, N., Bellakhal, N., Dachraoui, M. and Oturan, M.A. (2008) Experimental Design Methodology Applied to Electro-Fenton Treatment for Degradation of Herbicide Chlortoluron. Applied Catalysis B: Environmental, 78, 334-341.
http://dx.doi.org/10.1016/j.apcatb.2007.09.032

[7]   Arslan, I., Balciogul, I.A. and Bahnemann, D.W. (2000) Advanced Chemicaloxidation of Reactive Dyes in Simulated Dyehouse Effluent by Ferrioxalate-Fenton/UV-A and TiO2/UV—A Processes. Dyes Pigments, 47, 207.

[8]   Nam, S., Renganathan, V. and Tratnyek, P.G. (2001) Substituant Effects on Azo Dye Oxidation by the FeIII-EDTA-H2O2 System. Chemosphere, 45, 59.

[9]   Ashraf, S., Rauf, A. and Alhadrami, S. (2006) Degradation of Methyl RedFenton’s Reagent and the Effect of Various Salts. Dyes Pigments, 69, 80.

[10]   Zaied, M., Peulon, S., Bellakhal, N., Desmazieres, B. and Chausse, A. (2011) Studies of N-Demethylation Oxidative and Degradation of Methylene Blue by Thin Layers of Birnessite Electrodeposited onto SnO2. Applied Catalysis B: Environmental, 101, 441-450.
http://dx.doi.org/10.1016/j.apcatb.2010.10.014

[11]   Post, J.E. (1999) Manganese Oxide Minerals: Crystal Structures and Economic and Environmental Significance. Proceedings of the National Academy of Sciences of the United States of America, 96, 3447-3454.
http://dx.doi.org/10.1073/pnas.96.7.3447

[12]   Mao, L., Arihara, K., Sotomura, T. and Ohsaka, T. (2004) A Novel Alkaline Air Electrode Based on a Combined Use of Cobalt Hexadecafluoro-Phthalocyanine and Manganese Oxide. Electrochimica Acta, 49, 2515-2521.
http://dx.doi.org/10.1016/j.electacta.2004.02.007

[13]   Machefaux, E., Verbaer, A. and Guyomard, D. (2006) Electrochemical Synthesis of New Substituted Manganese Oxides for Lithium Battery Applications. Journal of Power Sources, 157, 443-447.
http://dx.doi.org/10.1016/j.jpowsour.2005.07.035

[14]   Feng, X.H., Zhai, L.M., Tan, W.F., Liu, F. and He, J.Z. (2007) Adsorption and Redox Reactions of Heavy Metals on Synthesized Mn Oxide Minerals. Environmental Pollution, 147, 366-373.
http://dx.doi.org/10.1016/j.envpol.2006.05.028

[15]   Chowdhury, A.N., Azam, M.S., Aktaruzzaman, M. and Rahim, A. (2009) Oxidative and Antibacterial Activity of Mn3O4. Journal of Hazardous Materials, 172, 1229-1235.
http://dx.doi.org/10.1016/j.jhazmat.2009.07.129

[16]   Lesueur, H., Czernichowski, A. and Chapelle, J. (1988) Dispositif de Génération de Plasmas Basse Température par Formation de Décharges Electriques Glissantes. French Patent No. 2639172.

[17]   Fridman, A., Petrousov, R., Chapelle, J., Carnier, L.M., Czernichowski, A., Lesueur, H. and Stevefelt, J. (1994) Modèle physique de l’arc glissant. Journal de Physique III, 4, 1449-1465.
http://dx.doi.org/10.1051/jp3:1994213

[18]   Benstaali, B., Moussa, D., Addou, A. and Brisset, J.L. (1998) Plasma Treatment of Aqueous Solutes: Some Chemical Properties of a Gliding Arc in Humid Air. The European Physical Journal Applied Physics, 4, 171-179.
http://dx.doi.org/10.1051/epjap:1998258

[19]   Marouf-Khelifa, K., Abdelmalek, F., Khelifa, A., Belhadj, M. and Addou, A. (2006) Reduction of Nitrite by Sulfamic Acid and Sodium Azide from Aqueous Solutions Treated by Gliding Arc Discharge. Separation and Purification Technology, 50, 373-379.
http://dx.doi.org/10.1016/j.seppur.2005.12.012

[20]   Benstaali, B., Chéron, B.G., Addou, A. and Brisset, J.L. (1998) Plasma Treatment of Aqueous Solutes: Some Chemical Properties of a Gliding Arc in Humid Air. The European Physical Journal Applied Physics, 4, 939-944.

[21]   Benstaali, B., Boubert, P., Chéron, B.G., Addou, A. and Brisset, J.L. (2002) Density and Rotational Temperatures Measurements of the NO and OH Radicals Produced by a Gliding Arc in Humid Air and Their Interaction with Aqueous Solutions. Plasma Chemistry and Plasma Processing, 22, 553-571.
http://dx.doi.org/10.1023/A:1021371529955

[22]   Imamura, A. and Hirao, K. (1979) A Molecular Orbital Approach to the Electrophilicity of H and OH Radicals. Bulletin of the Chemical Society of Japan, 52, 287-292.
http://dx.doi.org/10.1246/bcsj.52.287

[23]   Marouf-Khelifa, K., Abdelmalek, F., Khelifa, A., Belhadj, M., Addou, A. and Brisset, J.L. (2006) Reduction of Nitrite by Sulfamic Acid and Sodium Azide from Aqueous Solutions Treated by Gliding Arc Discharge. Separation and Purification Technology, 50, 373-379.
http://dx.doi.org/10.1016/j.seppur.2005.12.012

[24]   Larabi-Gruet, N., Peulon, S. and Lacroix, A. (2008) Studies of Electrodeposition from Mn(II) Species of Thin Layers of Birnessite onto Transparent Semiconductor. Electrochimica Acta, 53, 7281-7287.
http://dx.doi.org/10.1016/j.electacta.2008.03.080

[25]   Shin, J.Y., Buzgo, C.M. and Cheney, M.A. (2000) Mechanochemical Degradation of Atrazine Adsorbed on Four Synthetic Manganese Oxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 172, 113-123.
http://dx.doi.org/10.1016/S0927-7757(00)00574-4

[26]   Barrett, K.A. and McBride, M. (2005) Oxidative Degradation of Glyphosate and Aminomethylphosphonate by Manganese Oxide. Environmental Science & Technology, 39, 9223-9228.
http://dx.doi.org/10.1021/es051342d

[27]   Zaied, M., Chutet, E., Peulon, S., Bellakhal, N., Desmazieres, B., Dachraoui, M. and Chaussee, A. (2011) Spontaneous Oxidative Degradation of Indigo Carmine by Thin Films of Birnessite Electrodeposited onto SnO2. Applied Catalysis B: Environmental, 107, 42-51.
http://dx.doi.org/10.1016/j.apcatb.2011.06.035

[28]   Li, H., Lee, L.S., Schulze, D.G. and Guest, C.A. (2003) Role of Soil Manganese in the Oxidation of Aromatic Amines. Environmental Science & Technology, 37, 2686-2693.
http://dx.doi.org/10.1021/es0209518

[29]   Zhang, H. and Huang, C.H. (2003) Oxidative Transformation of Triclosan and Chlorophene by Manganese Oxides. Environmental Science & Technology, 37, 2421-2430.
http://dx.doi.org/10.1021/es026190q

[30]   Nowack, B. and Stone, A.T. (2003) Manganese-Catalyzed Degradation of Phosphonic Acids. Environmental Chemistry Letters, 1, 24-31.
http://dx.doi.org/10.1007/s10311-002-0014-3

[31]   Gaillot, A.C. (2002) Caractérisation structurale de la birnessite: Influence du protocole de synthèse. Université Joseph Fourier, Grenoble, 17-78.

[32]   Peulon, S., Baraize, Q. and Chausse, A. (2007) Iron Compounds Electrodeposited onto a Transparent Semiconductor: Synthesis and Characterisation by UV-Vis Spectroscopy. Electrochimica Acta, 52, 7681-7688.
http://dx.doi.org/10.1016/j.electacta.2006.12.084

[33]   Peulon, S. and Lincot, D. (1998) Mechanistic Study of Cathodic Electrodeposition of Zinc Oxide and Zinc Hydro-xychloride Films from Oxygenated Aqueous Zinc Chloride Solutions. Journal of The Electrochemical Society, 145, 864-874.
http://dx.doi.org/10.1149/1.1838359

[34]   Ndjeri, M., Peulon, S., Schlegel, M.L. and Chausse, A. (2011) In Situ Grazing-Incidence X-Ray Diffraction during Electrodeposition of Birnessite Thin Films: Identification of Solid Precursors. Electrochemistry Communications, 13, 491-494.
http://dx.doi.org/10.1016/j.elecom.2011.02.029

[35]   Shin, J.Y. and Cheney, M.A. (2004) Abiotic Transformation of Atrazine in Aqueous Suspension of Four Synthetic Manganese Oxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 242, 85-92.
http://dx.doi.org/10.1016/j.colsurfa.2004.04.061

[36]   Kang, K.H., Lim, D.M. and Shin, H.S. (2008) A Novel Solution for Hydroxylated PAHs Removal by Oxidative Coupling Reaction Using Mn Oxide. Water Science and Technology, 58, 171-178.
http://dx.doi.org/10.2166/wst.2008.637

[37]   Subramanian, V., Zhu, H. and Wei, B. (2006) Nanostructured MnO2: Hydrothermal Synthesis and Electrochemical Properties as a Supercapacitor Electrode Material. Journal of Power Sources, 159, 361-364.
http://dx.doi.org/10.1016/j.jpowsour.2006.04.012

[38]   Joseph, J., Destaillats, H., Hung, H. and Hoffman, M. (2000) The Sonochemical Degradation of Azobenzene and Related Azo Dyes: Rates Enhancements via Fenton’s Reactions. The Journal of Physical Chemistry A, 104, 301-307.
http://dx.doi.org/10.1021/jp992354m

[39]   Tanak, K., Padermole, K. and Hisanaga, T. (2000) Photocatalytic Degradation of Commercial Azo Dyes. Water Research, 34, 327-333.
http://dx.doi.org/10.1016/S0043-1354(99)00093-7

[40]   Chowdhury, A.N., Azam, M.S., Aktaruzzaman, M. and Rahim, A. (2009) Oxidative and Antibacterial Activity of Mn3O4. Journal of Hazardous Materials, 172, 1229-1235.
http://dx.doi.org/10.1016/j.jhazmat.2009.07.129

[41]   Stone, A.T. and Morgan, J.J. (1984) Reduction and Dissolution of Manganese(III) and Manganese(IV) Oxides by Organics. 1. Reaction with Hydroquinone. Environmental Science & Technology, 18, 450-456.
http://dx.doi.org/10.1021/es00124a011

 
 
Top