ALAMT  Vol.5 No.4 , December 2015
Hajós-Property for Direct Product of Groups
Author(s) Khalid Amin*
ABSTRACT
We study decomposition of finite Abelian groups into subsets and show by examples a negative answer to the question of whether Hajós-property is inherited by direct product of groups which have Hajós-property.

Cite this paper
Amin, K. (2015) Hajós-Property for Direct Product of Groups. Advances in Linear Algebra & Matrix Theory, 5, 139-142. doi: 10.4236/alamt.2015.54013.
References
[1]   Minkowski, H. (1896) Geometrie der Zahlen. Teubner, Leipzig.

[2]   Hajos, G. (1949) Sur la factorsation des groups aeliens. Casopis, 74, 157-162.

[3]   Rédei, L. (1965) Die neue Theoreie der endlichen abelschen Gruppen und Verall-geomeinerung des Hauptsatze von Hajós. Acta Mathematica Academiae Scientiarum Hungaricae, 16, 329-373.
http://dx.doi.org/10.1007/BF01904843

[4]   De Bruijn, N.G. (1950) On Bases for the Set of Integers. Publicationes, Mathematicae, 232-242.

[5]   Amin, K. (2014) Constructing Single-Error-Correcting Codes Using Factorization of Finite Abelian Groups. International Journal of Algebra, 8, 311-315.

[6]   Vuza, D.T. (1990-91) Supplementary Sets and Regular Complementary Unending Canons. Perspectives of New Music, 23.

[7]   Sands, A.D. (1962) Factorization of Abelian Groups. The Quarterly Journal of Mathematics, 13, 45-54.
http://dx.doi.org/10.1093/qmath/13.1.45

[8]   Amin, K. (1997) The Hajos-n-Property for finite p-Groups. PUMA, 1-12.

[9]   Sands, A.D. (1959) Factorization of Abelian Groups. The Quarterly Journal of Mathematics, 10, 81-91.
http://dx.doi.org/10.1093/qmath/10.1.81

 
 
Top