Back
 JAMP  Vol.3 No.11 , November 2015
Some Kinds of New Composite Solutions of a Kind of Coupled Schrödinger Equation
Abstract: With the help of the method that combines the first kind of elliptic equation with the function transformation, some kinds of new composite solutions of a kind of coupled Schrödinger equation are constructed. First, a kind of function transformation is presented, and then the problem of solving solutions of a kind of coupled Schrödinger equation can be changed to the problem of solving solutions of the first kind of elliptic equation. Then, with the help of the conclusions of the Bäcklund transformation and so on of the first kind of elliptic equation, the new infinite sequence composite solutions of a kind of coupled Schrödinger equation are constructed. These solutions are consisting of two-soliton solutions and two-period solutions and so on.
Cite this paper: Na, Y. , Dong, B. and Taogetusang, &. (2015) Some Kinds of New Composite Solutions of a Kind of Coupled Schrödinger Equation. Journal of Applied Mathematics and Physics, 3, 1376-1385. doi: 10.4236/jamp.2015.311165.
References

[1]   Huang, D.J. and Zhang, H.Q. (2004) Extended Hyperbolic Function Method and New Exact Solitary Wave Solutions of Zakharov Equations. Acta Physica Sinica, 53, 2434-2438.
http://dx.doi.org/10.7498/aps.53.2434

[2]   Zhao, C.H. and Sheng, Z.M. (2004) Explicit Travelling Wave Solutions for Zakharov Equations. Acta Physica Sinica, 53, 1629-1634.
http://dx.doi.org/10.7498/aps.53.1629

[3]   Zhang, S.Q. and Li, Z.B. (2002) New Explicit Exact Solutions to Nonlinearly Coupled Schrödinger-K dV Equations. Acta Physica Sinica, 51, 2197-2201.
http://dx.doi.org/10.7498/aps.51.2197

[4]   Gao, B., Liu, S.K. and Liu, S.D. (2009) Envelope Periodic and Solitary Solutions of Davey-Stewartson Equation. Acta Physica Sinica, 58, 2155-2158.
http://dx.doi.org/10.7498/aps.58.2155

[5]   Li, H.M. (2007) Exact Periodic Wave and Soliton Solutions in Two-Component Bose-Einstein Condensates. Chinese Physics B, 16, 3187-3191.
http://dx.doi.org/10.1088/1009-1963/16/11/007

[6]   Li, H.M. (2005) New Exact Solutions of Nonlinear Gross-Pitaevskii Equation with Weak Bias Magnetic and Time-Dependent Laser Fields. Chinese Physics B, 14, 251-256.
http://dx.doi.org/10.1088/1009-1963/14/2/006

[7]   Li, H.M. and Wu, F.M. (2005) Exact Discrete Soliton Solutions of Quintic Discrete Nonlinear Schrödinger Equation. Chinese Physics B, 14, 1069-1074.
http://dx.doi.org/10.1088/1009-1963/14/6/002

[8]   Ma, Z.Y., Ma, S.H. and Yang, Y. (2012) Rational Solutions and Spatial Solitons for the (2+1)-Dimensional Nonlinear Schrödinger Equation with Distributed Coefficients. Acta Physica Sinica, 61, 190508.
http://dx.doi.org/10.7498/aps.61.190508

[9]   Hu, J.L. (2007) Exact Solutions for Four Coupled Complex Nonlinear Differential Equations. Chinese Physics B, 16, 3192-3196.
http://dx.doi.org/10.1088/1009-1963/16/11/008

[10]   Liu, J.Y. (2015) Classifying Exact Traveling Wave Solutions to the Coupled-Higgs Equation. Journal of Applied Mathematics and Physics, 3, 279-284.
http://dx.doi.org/10.4236/jamp.2015.33041

[11]   Ding, H.Y., Xu, X.X. and Yang, H.X. (2005) An Extended Functional Transformation Method and Its Application in Some Evolution Equations. Chinese Physics B, 14, 1687-1690.
http://dx.doi.org/10.1088/1009-1963/14/9/001

[12]   Zhu, W.T., Ma, S.H., Fang, J.P., Ma, Z.Y. and Zhu, H.P. (2014) Fusion, Fission, and Annihilation of Complex Waves for the (2+1)-Dimensional Generalized Calogero-Bogoyavlenskii-Schiff System. Chinese Physics B, 23, Article ID: 060505.
http://dx.doi.org/10.1088/1674-1056/23/6/060505

[13]   Khaled, A. and Gepreel, S.O. (2012) Exact Solutions for Nonlinear Partial Fractional Differential Equations. Chinese Physics B, 21, Article ID: 110204.
http://dx.doi.org/10.1088/1674-1056/21/11/110204

[14]   Alam, M.N., Akbar, M.A. and Mohyud-Din, S.T. (2014) A Novel (G’/G)-Expansion Method and Its Application to the Boussinesq Equation. Chinese Physics B, 23, Article ID: 020203.
http://dx.doi.org/10.1088/1674-1056/23/2/020203

[15]   Gao, H. and Di, G.H. (2014) Exact Solutions to the Generalized Benjamin Equation. Journal of Applied Mathematics and Physics, 2, 671-676. http://dx.doi.org/10.4236/jamp.2014.27074

[16]   Khalfallah, M. (2008) Exact Traveling Wave Solutions of the Boussinesq-Burgers Equation. Mathematical and Computer Modelling, 49, 666-671.
http://dx.doi.org/10.1016/j.mcm.2008.08.004

[17]   Ma, S.H. and Fang, J.P. (2012) Peaked Soliton Solutions and Interaction between Solitons for the Extended (2+1)-Dimensional Shallow Water Wave Equation. Acta Physica Sinica, 61, Article ID: 180505.

[18]   Liu, C.S. (2010) Applications of Complete Discrimination System for Polynomial for Classifications of Traveling Wave Solutions to Nonlinear Differential Equations. Computer Physics Communications, 181, 317-324.
http://dx.doi.org/10.1016/j.cpc.2009.10.006

[19]   Jabbari, A., Kheiri, H. and Bekir, A. (2011) Exact Solutions of the Coupled Higgs Equation and the Maccari System Using He’s Semi-Inverse Method and (G’/G)-Expansion Method. Computers and Mathematics with Applications, 62, 2177-2186.
http://dx.doi.org/10.1016/j.camwa.2011.07.003

[20]   Wang, C.Y. and Du, X.H. (2013) Classifying Traveling Wave Solutions to the Zhiber-Shabat Equation. Journal of Applied Mathematics and Physics, 1, 1-3.
http://dx.doi.org/10.4236/jamp.2013.12001

[21]   Taogetusang and Yi, L.N. (2014) New Complexion Two-Soliton Solutions to a Kind of Nonlinear Coupled System. Acta Physica Sinica, 63, Article ID: 160201.

[22]   Wang, J.M. (2012) Riemann θ Function Solutions to Modified Korteweg de Vries-Sine-Gordon Equation. Acta Physica Sinica, 61, Article ID: 080201.

[23]   Taogetusang and Yi, L.N. (2014) New Infinite Sequence Solutions to Equations of Sine-Gordon Type. Acta Physica Sinica, 63, Article ID: 215202.

[24]   Taogetusang, Sirendaoerji and Li, S.M. (2010) New Application to Riccati Equation. Chinese Physics B, 19, Article ID: 080303.
http://dx.doi.org/10.1088/1674-1056/19/8/080303

 
 
Top