[1] McHugh, J. (1970) An Historical Survey of Ordinary Linear Differential Equations with a Large Parameter and Turning Points. Archive for History of Exact Sciences, 7, 277-324.
[2] Kostyuchenko, A.G. and Shkalikov, A.A. (1983) Selfadjoint Quadratic Operator Pencils and Elliptic Problem. Functional Analysis and Its Applications, 17, 109-128.
http://dx.doi.org/10.1007/BF01083136
[3] Freiling, G. (1988) On the Completeness and Minimality of the Derived Chains of Eigen and Associated Functions of Boundary Eigenvalue Problems Nonlinearly Dependent on the Parameter. Results in Mathematics, 1464-1483.
[4] Kaup, D.J. (1975) A Higher-Order Water-Wave Equation and the Method for Solving it. Progress of Theoretical Physics, 54, 396-408.
http://dx.doi.org/10.1143/PTP.54.396
[5] Cornille, H. (1970) Existence and Uniqueness of Crossing Symmetric N/D-Type Equations Corresponding to the Klein-Gordon Equation. Journal of Mathematical Physics, 11, 79-98.
http://dx.doi.org/10.1063/1.1665074
[6] Weiss, R. and Scharf, G. (1971) The Inverse Problem of Potential Scattering According to the Klein-Gordon Equation. Helvetica Physica Acta, 44, 910-929.
[7] Jaulent, M. and Jean, C. (1976) The Inverse Problem for the One-Dimensional Schrödinger Equation with an Energy-Dependent Potential I, II. Ann. Inst. H. Poincare Sect. A (N.S.), 25, 105-118, 119-137.
[8] Jaulent, M. (1972) On an Inverse Scattering Problem with an Energy-Dependent Potential. Ann. Inst. H. Poincare Sect. A (N.S.), 17, 363-378.
[9] Marchenko, V.A. (1977) Sturm-Liouville Operators and Their Applications. Naukova Dumka, Kiev English Trans Birkhauser, Basel.
[10] Chadan, K. and Sabatier, P.C. (1989) Inverse Problems in Quantum Scattering Theory, 2nd Edition, Springer-Verlag, New York.
http://dx.doi.org/10.1007/978-3-642-83317-5
[11] Levitan, B.M. (1987) Inverse Surm-Liouville problems. VNU Science Press, Utrecht.
[12] Levitan, B.M. and Gasymov, M.G. (1964) Determination of a Differential Equation by Two Spectra. Uspekhi Matematicheskikh Nauk, 192, 3-63.
http://dx.doi.org/10.1070/rm1964v019n02abeh001145
[13] Pöschel, J. and Trubowitz, E. (1987) Inverse Spectral Theory. Academic Press, New York.
[14] Deift, P. and Trubowitz, E. (1979) Inverse Scattering on the Line. Communications on Pure and Applied Mathematics, 32, 121-251.
http://dx.doi.org/10.1002/cpa.3160320202
[15] Freiling, G. and Yurko, V. (2001) Inverse Sturm-Liouville Problems and Their Applications. Nova Science Publishers, Inc., Huntington.
[16] McLaughlin, J.R. (1986) Analytical Methods for Recovering Coefficients in Differential Equations from Spectral Data. SIAM Review, 28, 53-57.
http://dx.doi.org/10.1137/1028003
[17] Gasymov, M.G. and Guseinov, G.S. (1981) Determination of a Diffusion Operator from Spectral Data. Akademiya Nauk Azerbaijani SSR Doklady, 37, 19-23.
[18] Guseinov, G.S. (1985) On the Spectral Analysis of a Quadratic Pencil of Sturm-Liouville Operators. Doklady Akademii nauk SSSR, 285, 1292-1296.
[19] Guseinov, I.M. and Nabiev, I.M. (2007) An Inverse Spectral Problem for Pencils of Differential Operators. Matematicheskii Sbornik, 198, 47-66.
http://dx.doi.org/10.1070/sm2007v198n11abeh003897
[20] Nabiev, I.M. (2004) The Inverse Spectral Problem for the Diffusion Operator on an Interval. Matematicheskaya Fizika, Analiz, Geometriya, 11, 302-313.
[21] Yurko, V.A. (2000) An Inverse Problem for Pencils of Differential Operators. Sbornik: Mathematics, 191, 1561-1586.
http://dx.doi.org/10.1070/SM2000v191n10ABEH000520
[22] Hryniv, R. and Pronska, N. (2012) Inverse Spectral Problem for Energy-Dependent Sturm-Liouville Equation. Inverse Problems, 28, Article ID: 085008.
http://dx.doi.org/10.1088/0266-5611/28/8/085008
[23] Pronska, N. (2013) Reconstruction of Energy-Dependent Sturm-Liouville Operators from Two Spectra. Integral Equations and Operator Theory, 76, 403-419.
[24] Sattinger, D.H. and Szmigielski, J. (1995) Energy Dependent Scattering Theory. Differential Integral Equations, 8, 945-959.
[25] Tsutsumi, M. (1981) On the Inverse Scattering Problem for the One-Dimensional Schrödinger Equation with an Energy Dependent Potential. Journal of Mathematical Analysis and Applications, 83, 316-350.
http://dx.doi.org/10.1016/0022-247X(81)90266-3
[26] van der Mee, C. and Pivovarchik, V. (2001) Inverse Scattering for a Schrodinger Equation with Energy Dependent Potential. Journal of Mathematical Physics, 42, 158-181.
http://dx.doi.org/10.1063/1.1326921
[27] Aktosun, T. and van der Mee, C. (1991) Scattering and Inverse Scattering for the1-D Schrödinger Equation with Energy-Dependent Potentials. Journal of Mathematical Physics, 32, 2786-2801.
http://dx.doi.org/10.1063/1.529070
[28] Nabiev, A.A. (2006) Inverse Scattering Problem for the Schrödinger-Type Equation with a Polynomial Energy-Dependent Potential. Inverse Problems, 22, 2055-2068.
http://dx.doi.org/10.1088/0266-5611/22/6/009
[29] Nabiev, A.A. and Guseinov, I.M. (2006) On the Jost Solutions of the Schrödinger-Type Equations with a Polynomial Energy-Dependent Potential. Inverse Problems, 22, 55-67.
http://dx.doi.org/10.1088/0266-5611/22/1/004
[30] Kamimura, Y. (2007) An Inversion Formula in Energy Dependent Scattering. Journal of Integral Equations and Applications, 19, 473-512.
http://dx.doi.org/10.1216/jiea/1192628620
[31] Yurko, V. (2006) Inverse Spectral Problems for Differential Pencils on the Half-Line with Turning Points. Journal of Mathematical Analysis and Applications, 320, 439-463.
http://dx.doi.org/10.1016/j.jmaa.2005.06.085
[32] Hald, O. (1984) Discontinuous Inverse Eigenvalue Problems. Communications on Pure and Applied Mathematics, 37, 539-577.
http://dx.doi.org/10.1002/cpa.3160370502
[33] Carlson, R. (1994) An Inverse Spectral Problem for Sturm-Liouville Operators with Discontinuous Coefficients. Proceedings of the American Mathematical Society, 120, 475-484.
http://dx.doi.org/10.1090/S0002-9939-1994-1197532-5
[34] Yurko, V. (2000) Integral Transforms Connected with Discontinuous Boundary Value Problems. Integral Transforms and Special Functions, 10, 141-164.
http://dx.doi.org/10.1080/10652460008819282
[35] Yurko, V.A. (2000) On Boundary Value Problems with Discontinuity Conditions inside an Interval. Differential Equations, 36, 1266-1269.
http://dx.doi.org/10.1007/BF02754199
[36] Amirov, R.K. (2006) On Sturm-Liouville Operators with Discontinuity Conditions inside an Interval. Journal of Mathematical Analysis and Applications, 317, 163-176.
http://dx.doi.org/10.1016/j.jmaa.2005.11.042
[37] Kobayashi, M. (1989) A Uniqueness Proof for Discontinuous Inverse Sturm-Liouville Problems with Symmetric Potentials. Inverse Problems, 5, 767-781.
http://dx.doi.org/10.1088/0266-5611/5/5/007
[38] Guseinov, I.M. and Pashaev, R.T. (2002) On an Inverse Problem for a Second-Order Differential Equation. Russian Mathematical Surveys, 57, 597-598.
http://dx.doi.org/10.1070/RM2002v057n03ABEH000517
[39] Akhmedova, E.N. (2002) On Representation of Solution of Sturm-Liouville Equation with Discontinuous Coefficients. Proceedings of the Institute of Mathematics and Mechanics National Academy of Sciences of Azerbaijan, 16, 208.
[40] Akhmedova, E. and Huseynov, H.M. (2003) On Eigenvalues and Eigenfunctions of One Class of Sturm-Liouville Operators with Discontinuous Coefficients. Transactions of National Academy of Sciences of Azerbaijan. Series of Physical-Technical and Mathematical Sciences, 23, 7-18.
[41] Mamedov, K.R. (2010) On an Inverse Scattering Problem for a Discontinuous Sturm-Liouville Equation with a Spectral Parameter in the Boundary Condition, Boundary Value Problems, 2010, Article ID: 171967.
http://dx.doi.org/10.1155/2010/171967
[42] Nabiev Adiloglu, A. and Amirov, R.K. (2013) On the Boundary Value Problem for the Sturm-Liouville Equation with the Discontinuous Coefficient. Mathematical Methods in the Applied Sciences, 36, 1685-1700.
http://dx.doi.org/10.1002/mma.2714