NS  Vol.7 No.11 , November 2015
Thymidine Glycol: The Effect on DNA Structure and DNA Binding by Site-Specific Proteins
Thymidine glycol (5,6-dihydroxy-5,6-dihydrothymidine, Tg) is a major type of oxidative damage in DNA. During chemical oligonucleotide synthesis, Tg residue was incorporated in the different positions of 17 b.p. DNA duplexes, which differ in one base pair in the internal part. According to UV-melting curves, Tg destabilizes the double helix in a sequence independent manner. In contrast, the localized alterations in duplex structure were shown by CD spectroscopy to depend on the type of base pairs flanking the Tg lesion. Molecular dynamics simulations demonstrate that Tg is partially out of the double helix. For the first time, Tg impact on several site-specific DNA-binding proteins is studied, namely p50 and p65 subunits of nuclear factor kappa-B (NF-κB) and DNA methyltransferase SsoII (M.SsoII). Our results show that p50/p50 and p65/p65 homodimers of NF-κB can tolerate a single Tg residue in the binding site quite well. Nevertheless the homodimers have different affinities to the oxidized κB site depending on the Tg position. M.SsoII can act as a transcription repressor when bound to the regulatory site. M.SsoII demonstrates decreased affinity and lowered methylation efficiency when its methylation site contains Tg in the central position. Single Tg in one half of the regulatory site decreases M.SsoII affinity to the oxidized DNA, whereas Tg presence in both half-sites prevents M.SsoII binding to such ligand.

Cite this paper
Kubareva, E. , Yang, F. , Ryazanova, A. , Dolinnaya, N. , Golovin, A. , Molochkov, N. , Romanova, E. , Karpova, E. , Zatsepin, T. and Oretskaya, T. (2015) Thymidine Glycol: The Effect on DNA Structure and DNA Binding by Site-Specific Proteins. Natural Science, 7, 491-509. doi: 10.4236/ns.2015.711051.
[1]   Frenkel, K., Goldstein, M.S. and Teebor, G.W. (1981) Identification of the cis-Thymine Glycol Moiety in Chemically Oxidized and Gamma-Irradiated Deoxyribonucleic Acid by High-Pressure Liquid Chromatography Analysis. Biochemistry, 20, 7566-7571.

[2]   Teebor, G., Cummings, A., Frenkel, K., Shaw, A., Voituriez, L. and Cadet, J. (1987) Quantitative Measurement of the Diastereoisomers of cis Thymidine Glycol in Gamma-Irradiated DNA. Free Radical Research Communications, 2, 303-309.

[3]   Wallace, S.S. (2002) Biological Consequences of Free Radi-cal-Damaged DNA Bases. Free Radical Biology & Medicine, 33, 1-14.

[4]   Adelman, R., Saul, R.L. and Ames, B.N. (1988) Oxidative Damage to DNA: Relation to Species Metabolic Rate and Life Span. Proceedings of the National Academy of Sciences of the United States of America, 85, 2706-2708.

[5]   Zuo, S., Boorstein, R.J. and Teebor, G.W. (1995) Oxidative Damage to 5-Methylcytosine in DNA. Nucleic Acids Research, 23, 3239-3243.

[6]   Cathcart, R., Schwiers, E., Saul, R.L. and Ames, B.N. (1984) Thymine Glycol and Thymidine Glycol in Human and Rat Urine: A Possible Assay for Oxidative DNA Damage. Pro-ceedings of the National Academy of Sciences of the United States of America, 81, 5633-5637.

[7]   Their, R., Brüning, T., Kocher, K., Blaszkewicz, M., Makropoulos, V., Sundberg, A. and Bolt, H.M. (1999) Determination of Urinary Thymidine Glycol Using Affinity Chromatography, HPLC and Post-Column Reaction Detection: A Biomarker of Oxidative DNA Damage upon Kidney Transplantation. Archives of Toxicology, 73, 479-484.

[8]   Makropoulos, W., Kocher, K., Heintz, B., Schwarz, E.R., Mertens, P.R. and Stefanidis, I. (2000) Urinary Thymidine Glycol as a Biomarker for Oxidative Stress after Kidney Transplantation. Renal Failure, 22, 499-510.

[9]   Lowe, F.J., Luettich, K. and Gregg, E.O. (2013) Lung Cancer Biomarkers for the Assessment of Modified Risk Tobacco Products: An Oxidative Stress Perspective. Biomarkers, 18, 183-195.

[10]   Brown, K.L., Adams, T., Jasti, V.P., Basu, A.K. and Stone, M.P. (2008) Interconversion of the cis-5R,6S- and trans- 5R,6R-Thymine Glycol Lesions in Duplex DNA. Journal of the American Chemical Society, 130, 11701-11710.

[11]   Basu, A.K., Loechler, E.L., Leadon, S.A. and Essigmann, J.M. (1989) Genetic Effects of Thymine Glycol: Site-Specific Mutagenesis and Molecular Modeling Studies. Journal of the American Chemical Society, 86, 7677-7681.

[12]   Belousova, E.A., Maga, G., Fan, Y., Kubareva, E.A., Romanova, E.A., Lebedeva, N.A., Oretskaya, T.S. and Lavrik, O.I. (2010) DNA Polymerases Beta and Lambda Bypass Thymine Glycol in Gapped DNA Structures. Biochemistry, 49, 4695-4704.

[13]   Aller, P., Duclos, S., Wallace, S.S. and Doublie, S. (2011) A Crystallographic Study of the Role of Sequence Context in Thymine Glycol Bypass by a Replicative DNA Polymerase Serendipitously Sheds Light on the Exonuclease Complex. Journal of Molecular Biology, 412, 22-34.

[14]   Dolinnaya, N.G., Kubareva, E.A., Romanova, E.A., Trikin, R.M. and Oretskaya, T.S. (2013) Thymidine Glycol: The Effect on DNA Molecular Structure and Enzymatic Processing. Biochimie, 95, 134-147.

[15]   Yang, F., Romanova, E., Kubareva, E., Dolinnaya, N., Gajdos, V., Burenina, O., Fedotova, E., Ellis, J.S., Oretskaya, T., Hianik, T. and Thompson, M. (2009) Detection of DNA Damage: Effect of Thymidine Glycol Residues on the Thermodynamic, Substrate and Interfacial Acoustic Properties of Oligonucleotide Duplexes. The Analyst, 134, 41-51.

[16]   Wan, F. and Lenardo, M.J. (2010) The Nuclear Signaling of NF-κB: Current Knowledge, New Insights, and Future Perspectives. Cell Research, 20, 24-33.

[17]   McCool, K.W. and Miyamoto, S. (2012) DNA Damage-Dependent NF-κB Activation: NEMO Turns Nuclear Signaling Inside Out. Immunological Reviews, 246, 311-326.

[18]   Gerondakis, S., Banerjee, A., Grigoriadis, G., Vasanthakumar, A., Gugasyan, R., Sidwell, T. and Grumont, R.J. (2012) NF-κB Subunit Specificity in Hemopoiesis. Immunological Reviews, 246, 272-285.

[19]   Mincheva-Tasheva, S. and Soler, R.M. (2013) NF-κB Signaling Pathways: Role in Nervous System Physiology and Pathology. Neuroscientist, 19, 175-194.

[20]   Oh, H. and Ghosh, S. (2013) NF-κB: Roles and Regulation in Different CD4+ T-Cell Subsets. Immunological Reviews, 252, 41-51.

[21]   Niederberger, E. and Geisslinger, G. (2013) Proteomics and NF-κB: An Update. Expert Review of Proteomics, 10, 189-204.

[22]   O’Dea, E. and Hoffmann, A. (2010) The Regulatory Logic of the NF-κB Signaling System. Cold Spring Harbor Perspectives in Biology, 2, a000216.

[23]   Ghosh, G., Wang, V.Y., Huang, D.B. and Fusco, A. (2012) NF-κB Regulation: Lessons from Structures. Immuno- logical Reviews, 246, 36-58.

[24]   Gilmore, T.D. (2006) Introduction to NF-κB: Players, Pathways, Perspectives. Oncogene, 25, 6680-6684.

[25]   Saccani, S., Pantano, S. and Natoli, G. (2003) Modulation of NF-κB Activity by Exchange of Dimers. Molecular Cell, 11, 1563-1574.

[26]   Kabe, Y., Ando, K., Hirao, S., Yoshida, M. and Handa, H. (2005) Redox Regulation of NF-κB Activation: Distinct Redox Regulation between the Cytoplasm and the Nucleus. Antioxidants & Redox Signaling, 7, 395-403.

[27]   Kunsch, C., Ruben, S.M. and Rosen, C.A. (1992) Selection of Optimal Κ-B/Rel DNA-Binding Motifs: Interaction of Both Subunits of NF-κB with DNA Is Required for Transcriptional Activation. Molecular and Cellular Biology, 12, 4412-4421.

[28]   Tisne, C., Delepierre, M. and Hartmann, B. (1999) How NF-κB Can Be Attracted by Its Cognate DNA. Journal of Molecular Biology, 293, 139-150.

[29]   Tisne, C., Hartmann, B. and Delepierre, M. (1999) NF-κ B Binding Mechanism: A Nuclear Magnetic Resonance and Modeling Study of a GGG → CTC Mutation. Biochemistry, 38, 3883-3894.

[30]   Wecker, K., Bonnet, M.C., Meurs, E.F. and Delepierre, M. (2002) The Role of the Phosphorus BI-BII Transition in Protein-DNA Recognition: The NF-κB Complex. Nucleic Acids Research, 30, 4452-4459.

[31]   Huang, D.B., Phelps, C.B., Fusco, A.J. and Ghosh, G. (2005) Crystal Structure of a Free κB DNA: Insights into DNA Recognition by Transcription Factor NF-κB. Journal of Molecular Biology, 346, 147-160.

[32]   Hailer-Morrison, M.K., Kotler, J.M., Martin, B.D. and Sugden, K.D. (2003) Oxidized Guanine Lesions as Modulators of Gene Transcription. Altered p50 Binding Affinity and Repair Shielding by 7,8-Dihydro-8-oxo-2’-deoxyguanosine Lesions in the NF-κB Promoter Element. Biochemistry, 42, 9761-9770.

[33]   Karyagina, A., Shilov, I., Tashlitskii, V., Khodoun, M., Vasilev, S., Lau, P.C. and Nikolskaya, I. (1997) Specific Binding of SsoII DNA Methyltransferase to Its Promoter Region Provides the Regulation of SsoII Restriction-Modification Gene Expression. Nucleic Acids Research, 25, 2114-2120.

[34]   Shilov, I., Tashlitsky, V., Khodoun, M., Vasil’ev, S., Alekseev, Y., Kuzubov, A., Kubareva, E. and Karyagina, A. (1998) DNA-Methyltransferase SsoII Interaction with Own Promoter Region Binding Site. Nucleic Acids Research, 26, 2659-2664.

[35]   Konarev, P.V., Kachalova, G.S., Ryazanova, A.Y., Kubareva, E.A., Karyagina, A.S., Bartunik, H.D. and Svergun, D.I. (2014) Flexibility of the Linker between the Domains of DNA Methyltransferase SsoII Revealed by Small-Angle X-Ray Scattering: Implications for Transcription Regulation in SsoII Restriction-Modification System. PLoS ONE, 9, e93453.

[36]   Smith, D.B. and Johnson, K.S. (1988) Single-Step Purification of Polypeptides Expressed in Escherichia coli as Fusions with Glutathione S-Transferase. Gene, 67, 31-40.

[37]   Tanaka, H., Vickart, P., Bertrand, J.R., Rayner, B., Morvan, F., Imbach, J.L., Paulin, D. and Malvy, C. (1994) Sequence-Specific Interaction of Alpha-Beta-Anomeric Double-Stranded DNA with the p50 Subunit of NFκB: Application to the Decoy Approach. Nucleic Acids Research, 22, 3069-3074.

[38]   Thi, H.L., Zatsepin T.S., Schierling B., Volkov, E.M., Wende, W., Pingoud, A., Kubareva, E.A. and Oretskaya T.S. (2011) Restriction Endonuclease SsoII with Photoregulated Activity — A “Molecular Gate” Approach. Bioconjugate Chemistry, 22, 1366-1373.

[39]   Ryazanova, A.Y., Winkler, I., Friedhoff, P., Viryasov, M.B., Oretskaya, T.S. and Kubareva, E.A. (2011) Crosslinking of (Cytosine-5)-DNA Methyltransferase SsoII and Its Complexes with Specific DNA Duplexes Provides an Insight into Their Structures. Nucleosides Nucleotides & Nucleic Acids, 30, 632-650.

[40]   Cantor, C.R., Warshaw, M.M. and Shapiro, H. (1970) Oligonucleotide Interactions. 3. Circular Dichroism Studies of the Conformation of Deoxyoligonucleotides. Biopolymers, 9, 1059-1077.

[41]   Perez, A., Marchan, I., Svozil, D., Sponer, J., Cheatham III, T.E., Laughton, C.A. and Orozco, M. (2007) Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of Alpha/Gamma Conformers. Biophysical Journal, 92, 3817-3829.

[42]   Dupradeau, F.Y., Pigache, A., Zaffran, T., Savineau, C., Lelong, R., Grivel, N., Lelong, D., Rosanski, W. and Cieplak, P. (2010) The R.E.D. Tools: Advances in RESP and ESP Charge Derivation and Force Field Library Building. Physical Chemistry Chemical Physics, 12, 7821-7839.

[43]   Gordon, M.S. and Schmidt, M.W. (2005) Advances in Electronic Structure Theory: GAMESS a Decade Later. In: Dykstra, C.E., Frenking, G., Kim, K.S. and Scuseria, G.E., Eds., Theory and Applications of Computational Chemistry: The First Forty Years, Elsevier, Amsterdam, 1167-1189.

[44]   Vorob’eva, O.V., Kariagina, A.S., Volkov, E.M., Viriasov, M.B., Oretskaia, T.S. and Kubareva, E.A. (2002) An Analysis of Methyltransferase SsoII-DNA Contacts in the Enzyme-Substrate Complex. Bioorganicheskaya Khimiya, 28, 402-410.

[45]   Ryazanova, A.Y., Kubareva, E.A., Grman, I., Lavrova, N.V., Ryazanova, E.M., Oretskaya, T.S. and Hianik, T. (2011) The Study of the Interaction of (Cytosine-5)-DNA Methyltransferase SsoII with DNA by Acoustic Method. The Analyst, 136, 1227-1233.

[46]   Scatchard, G. (1949) The Attractions of Proteins for Small Molecules an Ions. Annals of the New York Academy of Sciences, 51, 660-672.

[47]   Uporova, T.M., Kartashova, I.M., Skripkin, E.A., Lopareva, E. and Nikol’skaia, I.I. (1985) Restriction Endonucleases from Shigella sonnei 47. Voprosy Meditsinskoi Khimii, 31, 131-136.

[48]   Kung, H.C. and Bolton, P.H. (1997) Structure of a Duplex DNA Containing a Thymine Glycol Residue in Solution. The Journal of Biological Chemistry, 272, 9227-9236.

[49]   Brown, K.L., Roginskaya, M., Zou, Y., Altamirano, A., Basu, A.K. and Stone, M.P. (2010) Binding of the Human Nucleotide Excision Repair Proteins XPA and XPC/HR23B to the 5R-Thymine Glycol Lesion and Structure of the cis-(5R,6S) Thymine Glycol Epimer in the 5'-GTgG-3' Sequence: Destabilization of Two Base Pairs at the Lesion Site. Nucleic Acids Research, 38, 428-440.

[50]   Siggers, T., Chang, A.B., Teixeira, A., Wong, D., Williams, K.J., Ahmed, B., Ragoussis, J., Udalova, I.A., Smale, S.T. and Bulyk, M.L. (2012) Principles of Dimer-Specific Gene Regulation Revealed by a Comprehensive Characterization of NF-κB Family DNA Binding. Nature Immunology, 13, 95-102.

[51]   Metelev, V.G., Kubareva, E.A. and Oretskaya, T.S. (2013) Regulation of Activity of Transcription Factor NF-κB by Synthetic Oligonucleotides. Biochemistry (Moscow), 78, 867-878.

[52]   Sakurai, H., Chiba, H., Miyoshi, H., Sugita, T. and Toriumi, W. (1999) IκB Kinases Phosphorylate NF-κB p65 Subunit on Serine 536 in the Transactivation Domain. The Journal of Biological Chemistry, 274, 30353-30356.

[53]   Yu, Z., Zhang, W. and Kone, B.C. (2002) Histone Deacetylases Augment Cytokine Induction of the iNOS Gene. Journal of the American Society of Nephrology, 13, 2009-2017.

[54]   Schwabe, R.F., Schnabl, B., Kweon, Y.O. and Brenner, D.A. (2001) CD40 Activates NF-κB and c-Jun N-Terminal Kinase and Enhances Chemokine Secretion on Activated Human Hepatic Stellate Cells. Journal of Immunology, 166, 6812-6819.

[55]   Benezra, M., Chevallier, N., Morrison, D.J., MacLachlan, T.K., El-Deiry, W.S. and Licht, J.D. (2003) BRCA1 Augments Transcription by the NF-κB Transcription Factor by Binding to the Rel Domain of the p65/RelA Subunit. The Journal of Biological Chemistry, 278, 26333-26341.

[56]   Schwabe, R.F. and Sakurai, H. (2005) IKKbeta Phosphorylates p65 at S468 in Transactivaton Domain 2. FASEB Journal, 19, 1758-1760.

[57]   Buss, H., Handschick, K., Jurrmann, N., Pekkonen, P., Beuerlein, K., Muller, H., Wait, R., Saklatvala, J., Ojala, P.M., Schmitz, M.L., Naumann, M. and Kracht, M. (2012) Cyclin-Dependent Kinase 6 Phosphorylates NF-κB P65 at Serine 536 and Contributes to the Regulation of Inflammatory Gene Expression. PLoS ONE, 7, e51847.

[58]   Ferguson, K.A. (1964) Starch-Gel Electrophoresis-Application to the Classification of Pituitary Proteins and Polypeptides. Metabolism, 13, 985-1002.

[59]   Muller, C.W., Rey, F.A., Sodeoka, M., Verdine, G.L. and Harrison, S.C. (1995) Structure of the NF-κB p50 Homodimer Bound to DNA. Nature, 373, 311-317.

[60]   Ghosh, G., van Duyne, G., Ghosh, S. and Sigler, P.B. (1995) Structure of NF-κB p50 Homodimer Bound to a κB Site. Nature, 373, 303-310.

[61]   Chen, Y.Q., Ghosh, S. and Ghosh, G. (1998) A Novel DNA Recognition Mode by the NF-κB p65 Homodimer. Nature Structural Biology, 5, 67-73.

[62]   Sengchanthalangsy, L.L., Datta, S., Huang, D.B., Anderson, E., Braswell, E.H. and Ghosh, G. (1999) Characterization of the Dimer Interface of Transcription Factor NFκB p50 Homodimer. Journal of Molecular Biology, 289, 1029-1040.

[63]   Wurster, S.E., Bida, J.P., Her, Y.F. and Maher III, L.J. (2009) Characterization of Anti-NF-κB RNA Aptamer-Binding Specificity in Vitro and in the Yeast Three-Hybrid System. Nucleic Acids Research, 37, 6214-6224.

[64]   McTigue, M.A., Williams, D.R. and Tainer, J.A. (1995) Crystal Structures of a Schistosomal Drug and Vaccine Target: Glutathione S-Transferase from Schistosoma japonica and Its Complex with the Leading Antischistosomal Drug Praziquantel. Journal of Molecular Biology, 246, 21-27.

[65]   Sheehan, D., Meade, G., Foley, V.M. and Dowd, C.A. (2001) Structure, Function and Evolution of Glutathione Transferases: Implications for Classification of Non-Mammalian Members of an Ancient Enzyme Superfamily. The Bio- chemical Journal, 360, 1-16.

[66]   Romanenkov, A.S., Ustyugov, A.A., Zatsepin, T.S., Nikulova, A.A., Kolesnikov, I.V., Metelev, V.G., Nikulova, A.A., Kolesnikov, I.V., Metelev, V.G., Oretskaya, T.S. and Kubareva, E.A. (2005) Analysis of DNA-Protein Interactions in Complexes of Transcription Factor NF-κB with DNA. Biochemistry (Moscow), 70, 1212-1222.

[67]   Smale, S.T. (2012) Dimer-Specific Regulatory Mechanisms within the NF-κB Family of Transcription Factors. Immunological Reviews, 246, 193-204.

[68]   Hayden, M.S. and Ghosh, S. (2008) Shared Principles in NF-κB Signaling. Cell, 132, 344-362.

[69]   Nikolskaya, I.I., Lopatina, N.G., Suchkov, S.V., Kartashova, I.M. and Debov, S.S. (1984) Sequence Specificity of Isolated DNA-Cytosine Methylases from Shigella sonnei 47 Cells. Biochemistry International, 9, 771-781.

[70]   Vorob’eva, O.V., Vasil’ev, S.A., Kariagina, A.S., Oretskaia, T.S. and Kubareva, E.A. (2000) Analysis of Contacts between DNA and Protein in a Complex of SsoII Methyltransferase-Promoter Region of the Gene for the SsoII Restriction-Modification System. Molekuliarnaia Biologiia, 34, 1074-1080.

[71]   Romanenkov, A.S., Kisil, O.V., Zatsepin, T.S., Yamskova, O.V., Karyagina, A.S., Metelev, V.G., Oretskaia, T.S. and Kubareva, E.A. (2006) DNA-Methyltransferase SsoII as a Bifunctional Protein: Features of the Interaction with the Promoter Region of SsoII Restriction-Modification Genes. Biochemistry (Moscow), 71, 1341-1349.