ABB  Vol.6 No.11 , November 2015
Agrobacterium-Mediated Transformation of Mexican Lime (Citrus aurantifolia Swingle) Using Optimized Systems for Epicotyls and Cotyledons
ABSTRACT
Transgenic Mexican lime (Citrus aurantifolia Swingle) was produced through two explant sources, each using systems previously optimized for each source. One used epicotyls segments, which was the predominant explant for transgenic Citrus production following co-cultivation with Agrobacterium, and has a well-established protocol. The other procedure used embryo cotyledons from mature seeds, which was developed in our lab as an alternative for stable Citrus transformation. Cotyledon transformation and regeneration protocols were optimized by comparing variables in culture medium composition on shoot regeneration and four parameters in transient transformation. The optimized protocols were compared, and frequency of regeneration, frequency of transgenic plant-recovery and stable transformation efficiency indicated the superiority of the cotyledon protocol for Agrobacterium-mediated genetic transformation in Mexican lime. The tissue choice resulted in marked improvement in shoot regeneration (14.1% of explants producing shoots in epicotyls; 55.8% in cotyledons), stable transformation frequency (11.4% of epicotyls explants; 40.2% in cotyledons), and frequency of transgenic plant-recovery (37.9% in epicotyl explants; 92.6% in cotyledons). Thus, easy availability of explants using embryo cotyledons from mature seeds, technical simplicity, shortening of transformation time-course, and higher transformation and regeneration frequencies makes this new system an attractive alternative over the previously published Citrus transformation protocols. In the course of this project, we generated Mexican lime with a Recombinase Mediated Exchange Cassette landing pad, which was designed for stacking transgenes.

Cite this paper
P. de Oliveira, M. , Moore, G. , G. Thomson, J. and Stover, E. (2015) Agrobacterium-Mediated Transformation of Mexican Lime (Citrus aurantifolia Swingle) Using Optimized Systems for Epicotyls and Cotyledons. Advances in Bioscience and Biotechnology, 6, 657-668. doi: 10.4236/abb.2015.611069.
References
[1]   Cardoso S.C., Barbosa-Mendes, J.M., Boscariol-Camargo, R.L., Christiano, R.S.C., Filho, A.B., Vieira, M.L.C., Mendes, B.M.J. and Mourão Filho, F.A.A. (2010) Transgenic Sweet Orange (Citrus sinensis L. Osbeck) Expressing the Attacin A Gene for Resistance to Xanthomonas citri subsp. citri. Plant Molecular Biology Reports, 28, 185-192.
http://dx.doi.org/10.1007/s11105-009-0141-0

[2]   Orbovic, V., Soria, P., Moore, G.A. and Grosser, J.W. (2011) The Use of Citrus Tristeza Virus (CTV) Containing a Green Fluorescent Protein Gene as a Tool to Evaluate Resistance/Tolerance of Transgenic Citrus Plants. Crop Protection, 30, 572-576.
http://dx.doi.org/10.1016/j.cropro.2011.01.001

[3]   He, Y., Chen, S., Peng, A., Zou, X., Xu, L., Lei, T., Liu, X. and Yao, L. (2011) Production and Evaluation of Transgenic Sweet Orange (Citrus sinensis Osbeck) Containing Bivalent Antibacterial Peptide Genes (Shiva A and Cecropin B) via a Novel Agrobacterium-Mediated Transformation of Mature Axillary Buds. Scientia Horticulturae, 18, 99-107.
http://dx.doi.org/10.1016/j.scienta.2011.01.002

[4]   Ali, S., Mannan A., Oirdi M.E., Waheed A. and Mirza B. (2012) Agrobacterium-Mediated Transformation of Rough Lemon (Citrus jambhiri Lush) with Yeast HAL2 Gene. BMC Research Notes, 5, 285.
http://dx.doi.org/10.1186/1756-0500-5-285

[5]   Bunnag S. and Tangpong, D. (2012) Genetic Transformation of Citrus sinensis L. with an Antisense ACC Oxidase Gene. American Journal of Plant Sciences, 3, 1336-1340.
http://dx.doi.org/10.4236/ajps.2012.39161

[6]   Dutt, M. and Grosser, J.W. (2010) An Embryogenic Suspension Cell Culture System for Agrobacterium-Mediated Transformation of Citrus. Plant Cell Reports, 29, 1251-1260.
http://dx.doi.org/10.1007/s00299-010-0910-0

[7]   Guo, W., Duan, Y., Olivares-Fuster, O., Wu, Z., Arias, C.R., Burns, J.K. and Grosser, J.W. (2005) Protoplast Transformation and Regeneration of Transgenic Valencia Sweet Orange Plants Containing a Juice Quality-Related Pectin Methylesterase Gene. Plant Cell Reports, 24, 482-486.
http://dx.doi.org/10.1007/s00299-005-0952-x

[8]   Costa, M.G.C., Otoni, W.C. and Moore, G.A. (2002) An Evaluation of Factors Affecting the Efficiency of Agrobacterium-Mediated Transformation of Citrus paradisi (Macf.) and the Production of Transgenic Plants Containing Carotenoid Biosynthetic Genes. Plant Cell Reports, 21, 365-373.
http://dx.doi.org/10.1007/s00299-002-0533-1

[9]   De Oliveira, M.L.P., Febres, V.J., Costa, M.G.C., Moore, G.A. and Otoni, W.C. (2009) High-Efficiency Agrobacterium-Mediated Transformation of Citrus via Sonication and Vacuum Infiltration. Plant Cell Reports, 28, 387-395.
http://dx.doi.org/10.1007/s00299-008-0646-2

[10]   Favero, P., Mourão Filho, F.A.A., Stipp, L.C.L. and Mendes, B.M.J. (2012) Genetic Transformation of Three Sweet Orange Cultivars from Explants of Adult Plants. Acta Physiologiae Plantarum, 34, 471-477.
http://dx.doi.org/10.1007/s11738-011-0843-4

[11]   Marutani-Hert, M., Bowman, K.D., McCollum, G.T., Mirkov, E., Evens, T.J. and Niedz, R.P. (2012) A Dark Incubation Period Is Important for Agrobacterium-Mediated Transformation of Mature Internode Explants of Sweet Orange, Grapefruit, Citron, and a Citrange Rootstock. PLoS ONE, 7, e47426.
http://dx.doi.org/10.1371/journal.pone.0047426

[12]   Chern, A., Hosskawa, Z., Cherubini, C. and Cline, M. (1993) Effects of Node Position on Lateral Bud out Growth in the Decapitation Shoot of Ipomoea nil. Ohio Journal of Sciences, 93, 11-13.

[13]   Litz, R.E., Raharjo, S., Efendi, D., Pliego-Alfaro, F. and Barcelo-Munoz, A. (2005) Persea americana Avocado. In: Litz, R., Ed., Biotechnology of Fruit and Nut Crops, Cromwell Press, Trowbridge, 331-335.
http://dx.doi.org/10.1079/9780851996622.0326

[14]   Barcelo-Munoz, A., Encina, C.L., Simon-Perez, E. and Pliego-Alfaro, F. (1999) Micropropagation of Adult Avocado. Plant Cell Tissue and Organ Culture, 58, 11-17.
http://dx.doi.org/10.1023/A:1006305716426

[15]   Birch, R.G. (1997) Plant Transformation: Problems and Strategies for Practical Applications. Annual Reviews of Plant Physiology and Plant Molecular Biology, 48, 297-326.
http://dx.doi.org/10.1146/annurev.arplant.48.1.297

[16]   Dutt, M. and Grosser, J.W. (2009) Evaluation of Parameters Affecting Agrobacterium-Mediated Transformation of Citrus. Plant Cell Tissue and Organ Culture, 98, 331-340.
http://dx.doi.org/10.1007/s11240-009-9567-1

[17]   Dutt, M., Vasconcellos, M. and Grosser, J.W. (2011) Effects of Antioxidants on Agrobacterium-Mediated Transformation and Accelerated Production of Transgenic Plants of Mexican Lime (Citrus aurantifolia Swingle). Plant Cell Reports, 107, 79-89.
http://dx.doi.org/10.1007/s11240-011-9959-x

[18]   De Oliveira, M.L.P., Stover, E. and Thomson, J.G. (2015) The codA Gene as a Negative Selection Marker in Citrus. SpringerPlus, 4, 264.
http://dx.doi.org/10.1186/s40064-015-1047-y

[19]   Storchová, H., Hrdlièková, R., Chrtek Jr., J., Tetera, M., Fritze, D. and Fehrer, J. (2000) An Improved Method of DNA Isolation from Plants Collected in the Field and Conserved in Saturated NaCl/CTAB Solution. Taxon, 49, 79-84.
http://dx.doi.org/10.2307/1223934

[20]   Donmez, D., Simsek, O., Izgu, T., Aka, K.Y. and Yesim, Y.M. (2013) Genetic Transformation in Citrus. The Scientific World Journal, 2013, Article ID: 491207.
http://dx.doi.org/10.1155/2013/491207

[21]   Bordón, Y., Guardiola, J.L. and García-Luis, A. (2000) Genotype Affects the Morphogenic Response in Vitro of Epicotyl Segments of Citrus Rootstocks. Annals of Botany, 86, 159-166.
http://dx.doi.org/10.1006/anbo.2000.1177

[22]   Paudyal, K.P. and Haq, N. (2000) In Vitro Propagation of Pummel (Citrus grandis L. Osbeck). In Vitro Cell and Developmental Biology, 36, 511-516.
http://dx.doi.org/10.1007/s11627-000-0091-6

[23]   Moreira-Dias, J.M., Molina, R.V., Bordon, Y., Guardiola, J.L. and Garcia-Luis, A. (2000) Direct and Indirect Shoot Organogenic Pathways in Epicotyl Cuttings of Troyer citrange Differ in Hormone Requirements and in Their Response to Light. Annals of Botany, 85,103-110.
http://dx.doi.org/10.1006/anbo.2000.1001

[24]   Cervera, M., Navarro, A., Navarro, L. and Peña, L. (2008) Production of Transgenic Adult Plants from Clementine Mandarin by Enhancing Cell Competence for Transformation and Regeneration. Tree Physiology, 28, 55-66.
http://dx.doi.org/10.1093/treephys/28.1.55

[25]   Rodríguez, A., Cervera, M., Peris, J.E. and Peña, L. (2008) The Same Treatment for Transgenic Shoot Regeneration Elicits Opposite Effect in Mature Explants from Two Closely Related Sweet Orange (Citrus sinensis (L.) Osb. Genotypes. Plant Cell Tissue and Organ Culture, 93, 97-106.
http://dx.doi.org/10.1007/s11240-008-9347-3

[26]   Amoah, B.K., Wu, H., Sparks, C. and Jones, H.D. (2001) Factors Influencing Agrobacterium-Mediated Transient Expression of uidA in Wheat Inflorescence Tissue. Journal of Experimental Botany, 52, 1135-1142.
http://dx.doi.org/10.1093/jexbot/52.358.1135

[27]   Charity, J.A., Holland, L., Donaldson, S.S., Grace, L. and Walter, C. (2002) Agrobacterium-Mediated Transformation of Pinus radiata Organogenic Tissue Using Vacuum-Infiltration. Plant Cell Tissue Organ Culture, 70, 51-60.
http://dx.doi.org/10.1023/A:1016009309176

[28]   Acereto-Escoffié, P.O.M., Chi-Manzanero, B.H., Echeverría-Echeverría, S., Grijalva, R., Kay, A.J., González-Estrada, T., Castaño, E. and Rodrígues-Zapata, L.C. (2005) Agrobacterium-Mediated Transformation of Musa acuminata cv. “Grand Nain” Scalps by Vacuum Infiltration. Scientia Horticulturae, 105, 359-371.
http://dx.doi.org/10.1016/j.scienta.2005.01.028

[29]   Canche-Moo, R.L.R., Ku-Gonzalez, A., Burgeff, C., Loyola-Vargas, V.M., Rodríguez-Zapata, L.C. and Castaño, E. (2006) Genetic Transformation of Coffea canephora by Vacuum Infiltration. Plant Cell Tissue and Organ Culture, 84, 373-377.
http://dx.doi.org/10.1007/s11240-005-9036-4

[30]   Bond, J.E. and Roose, M.L. (1998) Agrobacterium-Mediated Transformation of the Commercially Important Citrus Cultivar Washington Navel Orange. Plant Cell Reports, 18, 229-234.
http://dx.doi.org/10.1007/s002990050562

[31]   Mendes, B.M.J., Boscariol, R.L., Mourão Filho, F.A.A. and De Almeida, W.A.B. (2002) Agrobacterium-Mediated Genetic Transformation of “Hamlin” Sweet Orange. Pesquisa Agropecuaria Brasileira, 37, 955-961.
http://dx.doi.org/10.1590/S0100-204X2002000700009

[32]   Cervera, M., Pina, J.A., Juárez, J., Navarro, L. and Peña, L. (1998) Agrobacterium-Mediated Transformation of Citrange: Factors Affecting Transformation and Regeneration. Plant Cell Reports, 18, 271-278.
http://dx.doi.org/10.1007/s002990050570

[33]   Yang, Z.N., Ingelbrecht, I.L., Louzada, E., Skaria, M. and Mirkov, T.E. (2000) Agrobacterium-Mediated Transformation of the Commercially Important Grapefruit Cultivar Rio Red (Citrus paradisi Macf.). Plant Cell Reports, 19, 1203-1211.
http://dx.doi.org/10.1007/s002990000257

[34]   De la Riva, G.A., González-Cabrera, J., Vázquez-Padrón, R. and Ayra-Pardo, C. (1998) Agrobacterium tumefaciens: A Natural Tool for Plant Transformation. Electronic Journal of Biotechnology, 1, 24-25.

[35]   Wang, Y., Yau, Y.-Y., Perkins-Balding, D. and Thomson, J. (2011) Recombinase Technology: Applications and Possibilities. Plant Cell Reports, 30, 267-285.
http://dx.doi.org/10.1007/s00299-010-0938-1

 
 
Top