GSC  Vol.5 No.4 , November 2015
Synthesis of New Mannich Products Bearing Quinoline Nucleous Using Reusable Ionic Liquid and Antitubercular Evaluation
ABSTRACT
A series of Mannich products bearing quinoline nucleus was synthesized, characterized, and evaluated for their in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv. The results showed that compounds 4b, and 4d found most active with percentage inhibition of 95, and 96, respectively, at minimum inhibitory concentration (MIC) of >6.25 μg/mL, among the synthesized compounds. Whereas, compounds 4a, 4c, 4e, and 4f exhibited considerable antitubercular activity with percentage inhibition of 71, 79, 55, and 68, respectively, at MIC of >6.25 μg/mL. The structures of synthesized compounds were elucidated by various spectroscopic tools like IR, 1H NMR, 13C NMR, mass and elemental analysis.

Cite this paper
Patel, H. (2015) Synthesis of New Mannich Products Bearing Quinoline Nucleous Using Reusable Ionic Liquid and Antitubercular Evaluation. Green and Sustainable Chemistry, 5, 137-144. doi: 10.4236/gsc.2015.54017.
References
[1]   Zumla, A., George, A., Sharma, V., Herbert, N. and Baroness, I. (2013) Masham of Ilton. The Lancet, 382, 1765-1767.
http://dx.doi.org/10.1016/S0140-6736(13)62078-4

[2]   World Health Organization (2013) Global Tuberculosis Report. World Health Organization.
http://apps.who.int/iris/bitstream/10665/91355/1/9789241564656

[3]   Abubakar, I., Zignol, M., Falzon, D., Raviglione, M., Ditiu, L., Masham, S., Adetifa, I., Ford, N., Cox, H., Lawn, S.D., Marais, B.J., McHugh, T.D., Mwaba, P., Bates, M., Lipman, M., Zijenah, L., Logan, S., McNerney, R., Zumla, A., Sarda, K., Nahid, P., Hoelscher, M., Pletschette, M., Memish, Z.A., Kim, P., Hafner, R., Cole, S., Migliori, G.B., Maeurer, M., Schito, M. and Zumla, A. (2013) Drug-Resistant Tuberculosis: Time for Visionary Political Leadership. The Lancet Infectious Diseases, 13, 529-539.
http://dx.doi.org/10.1016/S1473-3099(13)70030-6

[4]   Lawn, S.D., Mwaba, P., Bates, M., Piatek, A., Alexander, H., Marais, B.J., Cuevas, L.E., McHugh, T.D., Zijenah, L., Kapata, N., Abubakar, I., McNerney, R., Hoelscher, M., Memish, Z.A., Migliori, G.B., Kim, P., Maeurer, M., Schito, M. and Zumla, A. (2013) Advances in Tuberculosis Diagnostics: the Xpert MTB/RIF Assay and Future Prospects for a Point-of-Care Test. The Lancet Infectious Diseases, 13, 349-361.
http://dx.doi.org/10.1016/S1473-3099(13)70008-2

[5]   Prabowo, S.A., Groschel, M.I., Schmidt, E.D., Skrahina, A., Mihaescu, T., Hasturk, S., Mitrofanov, R., Pimkina, E., Visontai, I., de Jong, B., Stanford, J.L., Cardona, P.J., Kaufmann, S.H. and vander Werf, T.S. (2013) Targeting Multidrug-Resistant Tuberculosis (MDR-TB) by Therapeutic Vaccines. Medical Microbiology and Immunology, 202, 95-104.
http://dx.doi.org/10.1007/s00430-012-0278-6

[6]   Falzon, D., Jaramillo, E., Schünemann, H., Arentz, M., Bauer, M., Bayona, J., Blanc, L., Caminero, J., Daley, C. and Duncombe, C. (2011) WHO Guidelines for the Programmatic Management of Drug-Resistant Tuberculosis: 2011 Update. European Respiratory Journal, 38, 516-528.
http://dx.doi.org/10.1183/09031936.00073611

[7]   World Health Organization (2003) The World Health Organization Global Tuberculosis Program.
http://www.who.int/gtb/

[8]   Espinal, M.A. (2003) The global situation of MDR-TB. Tuberculosis, 83, 44-51.
http://dx.doi.org/10.1016/S1472-9792(02)00058-6

[9]   Parrish, N.M., Dick, J.D. and Bishai, W.R. (1998) Mechanisms of Latency in Mycobacterium tuberculosis. Trends in Microbiology, 6, 107-112.
http://www.sciencedirect.com/science/article/pii/S0966842X98012165
http://dx.doi.org/10.1016/S0966-842X(98)01216-5


[10]   Vijayraghavan, S., Somani, R., Shirodkar, P. and Kadam, V. (2009) Microwave Assisted Synthesis and Antimicrobial Activity of Some Newer Mannich Bases. International Journal of PharmTech Research, 3, 811-815.
http://www.sphinxsai.com/PTVOL3/PT=64,Rakesh%20Somani%20(811-815).pdf

[11]   Joshi, S., Khosla, N. and Tiwari, P. (2004) In vitro Study of Some Medicinally Important Mannich Bases Derived from Antitubercular Agent. Bioorganic & Medicinal Chemistry, 12, 571-576.
http://www.ncbi.nlm.nih.gov/pubmed/14738966
http://dx.doi.org/10.1016/j.bmc.2003.11.001


[12]   Sriram, D., Yogeswari, P. and Reddy, S. (2006) Synthesis of Pyrazinamide Mannich Bases and Its Antitubercular Properties. Bioorganic & Medicinal Chemistry, 16, 2113-2116.
http://www.ncbi.nlm.nih.gov/pubmed/16464574
http://dx.doi.org/10.1016/j.bmcl.2006.01.064


[13]   Senthilkumar, P., Dinakaran, M., Yogeeswari, P., Sriram, D., China, A. and Nagaraja, V. (2009) Synthesis and Antimycobacterial Activities of Novel 6-Nitroquinolone-3-Carboxylic Acids. European Journal of Medicinal Chemistry, 44, 345.
http://www.ncbi.nlm.nih.gov/pubmed/18502542
http://dx.doi.org/10.1016/j.ejmech.2008.02.031


[14]   Dinakaran, M., Senthilkumar, P., Yogeeswari, P., China, A., Nagaraja, V. and Sriram, D. (2008) Novel Ofloxacin Derivatives: Synthesis, Antimycobacterial and Toxicological Evaluation. Bioorganic & Medicinal Chemistry Letters, 18, 1229-1236.
http://www.ncbi.nlm.nih.gov/pubmed/18068979
http://dx.doi.org/10.1016/j.bmcl.2007.11.110


[15]   Nayyar, A., Monga, V., Malde, A., Coutinho, E. and Jain, R. (2007) Synthesis, Anti-Tuberculosis Activity, and 3D-QSAR Study of 4-(Adamantan-1-yl)-2-substituted Quinolines. Bioorganic & Medicinal Chemistry, 15, 626-640.
http://dx.doi.org/10.1016/j.bmc.2006.10.064

[16]   Patel, H.M. (2014) International Journal of Scientific & Engineering Research, 5, 2213-2217.
http://www.recentscientific.com/sites/default/files/download_168.pdf

[17]   Patel, H.M. (2014) Synthesis, Structure Investigation and Dyeing Assessment of Novel Bisazo Disperse Dyes Derived from UV Absorbing Materia. IOSR Journal of Applied Chemistry, 6, 51-55.
http://iosrjournals.org/iosr-jac/papers/vol6-issue5/E0655155.pdf

[18]   Dixit, B.C., Patel, H.M., Dixit, R.B., Desai, D.J. (2007) Synthesis and Application of New Mordent and Disperse Azo Dyes Based on 2,4-Dihydroxybenzophenone. Journal of the Serbian Chemical Society, 72, 119-127. www.doiserbia.nb.rs/ft.aspx?id=0352-51390702119D
http://dx.doi.org/10.2298/JSC0702119D


[19]   Dixit, B.C. and Patel, H.M. (2011) Synthesis, Characterization and Printing Application of Solvent Dyes Based on 2-Hydroxy-4-n-octyloxybenzophenone. E-Journal of Chemistry, 8, 615-620.
http://downloads.hindawi.com/journals/jchem/2011/862929.pdf

[20]   Dixit, B.C., Patel, H.M., Dixit, R.B., Desai, D.J. (2010) Synthesis, Characterization and Dyeing Assessment of Novel Acid Azo Dyes and Mordent Acid Azo Dyes Based on 2-Hydroxy-4-methoxybenzophenone on Wool and Silk Fabrics. Journal of the Serbian Chemical Society, 75, 605-614. www.doiserbia.nb.rs/ft.aspx?id=0352-51391000039D

[21]   Dixit, B.C., Patel, H.M., Dixit, R.B., Desai, D.J. (2009) Studies on Dyeing Performance of Novel Acid Azo Dyes and Mordent Acid Azo Dyes Based on 2,4-Dihydroxybenzophenone. E-Journal of Chemistry, 6, 315-322.
https://scholar.google.co.in/scholar?q=E-Journal+of+Chemistry.+2009,+6(2),+315-322

[22]   Patel, H.M. and Dixit, B.C. (2014) Synthesis, Characterization and Dyeing Assessment of novel Acid Azo Dyes and Mordent Acid Azo Dyes Based on 2-Hydroxy-4-methoxybenzophenone-5-sulfonic Acid on Wool and Silk Fabrics. Journal of Saudi Chemical Society, 18, 507-512.
www.sciencedirect.com/science/article/pii/S1319610311002031
http://dx.doi.org/10.1016/j.jscs.2011.10.015


[23]   Dixit, B.C. and Patel, H.M. (2010) Material Applications of Novel Disperse and Mordent Azo Dyes Based on 2-Hydroxy-4-Methoxy Benzophenone. Asian Journal of Chemistry, 22, 921-928.
http://www.asianjournalofchemistry.co.in/user/journal/viewarticle.aspx?ArticleID=22_2_15

[24]   Patel, H.M. (2012) Synthesis, Characterization and Dyeing Behaviour of Heterocyclic Acid Dyes and Mordent Acid Dyes on Wool and Silk Fabrics. Journal of the Serbian Chemical Society, 77, 1551-1560. www.doiserbia.nb.rs/ft.aspx?id=0352-51391200047P

[25]   Patel, H.M. (2012) Synthesis, Characterization and Application of Some Novel Mordent and Heterocyclic Disperse Dyes Based on Polyester and Wool Fibers. Orbital—The Electronic Journal of Chemistry, 4, 160-170.
http://www.orbital.ufms.br/index.php/Chemistry/article/view/253/pdf

[26]   Patel, H.M. (2012) Material Applications of Novel Heterocyclic Disperse and Mordent Dyes Based on 2-Butyl-3-(4-hydroxybenzoyl) Benzofuran. Advances in Applied Science Research, 3, 235-241.
http://pelagiaresearchlibrary.com/advances-in-applied-science/vol3-iss1/AASR-2012-3-1-235-241.pdf

[27]   Patel, H.M. (2011) Synthesis, Characterization and Application of Some Novel Mordent and Heterocyclic Disperse Dyes Based on 2-Butyl-3-(4-hydroxybenzoyl) Benzofuran. Der Chemica Sinica, 2, 89-96.
http://pelagiaresearchlibrary.com/der-chemica-sinica/vol2-iss6/DCS-2011-2-6-89-96.pdf

[28]   Patel, H.M. (2012) Dyeing Assessment of Some Novel Mordent and Heterocyclic Disperse Dyes Based on Dihydrobenzofuran Derivatives on to Polyester and Wool Fibers. Der Chemica Sinica, 3, 175-181.
http://pelagiaresearchlibrary.com/der-chemica-sinica/vol3-iss1/DCS-2012-3-1-175-181.pdf

[29]   Collins, L. and Franzblau, S.G. (1997) Microplate Alamar Blue Assay versus BACTEC 460 System for High-Throughput Screening of Compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrobial Agents and Chemotherapy, 41, 1004-1009.
http://aac.asm.org/content/41/5/1004.abstract

[30]   Yajko, D.M., Madej, J.J., Lancaster, M.V., Sanders, C.A., Cawthon, V.L., Gee, B., Babst, A. and Hadley, W.K. (1995) Colorimetric Method for Determining MICs of Antimicrobial Agents for Mycobacterium tuberculosis. Journal of Clinical Microbiology, 33, 2324-2327.
http://www.ncbi.nlm.nih.gov/pubmed/7494021

 
 
Top