JMP  Vol.6 No.14 , November 2015
Plasma Surface Treatment of BOPP Film by Dielectric Barrier Glow Discharge in Argon/Air
Author(s) Longxi Chen1,2*, Xiangjia Meng1,2, Zhen Mei1,2
ABSTRACT
A plasma surface treatment of biaxially oriented polypropylene (BOPP) film was carried out with dielectric barrier glow discharge (DBGD) in Ar/air. The paper studied the effects of the ratios of Ar/air plasma on the BOPP surface modification. The results indicated that the efficiency of the plasma surface modification was improved with increasing treatment time and power density with DBGD in Ar/air. The water contact angle increased first and then decreased with the increase of the Ar/air mixture rate. The DBGD gives a better surface modification than filament discharge. The ageing behavior was influenced by the mixture rate of Ar/air, but the water contact angle of the treated sample was always less than that of un-treated sample.

Cite this paper
Chen, L. , Meng, X. and Mei, Z. (2015) Plasma Surface Treatment of BOPP Film by Dielectric Barrier Glow Discharge in Argon/Air. Journal of Modern Physics, 6, 1991-1999. doi: 10.4236/jmp.2015.614205.
References
[1]   Nuntapichedkul, B., Tantayanon, S. and Laohhasurayotin, K. (2014) Applied Surface Science, 314, 331.
http://dx.doi.org/10.1016/j.apsusc.2014.06.032

[2]   Guimond, S., Radu, I., Czeremuszkin, G., et al. (2002) Plasmas and Polymers, 7, 71.
http://dx.doi.org/10.1023/A:1015274118642

[3]   Hamideh Mortazavi, S., Ghoranneviss, M., Pilehvar, S., et al. (2013) Plasma Science and Technology, 15, 362.
http://dx.doi.org/10.1088/1009-0630/15/4/10

[4]   Lin, Y.J., Dias, P., Chen, H.Y., et al. (2008) Polymer Engineering & Science, 48, 642.
http://dx.doi.org/10.1002/pen.20988

[5]   Tamura, S., Takino, K., Yamada, T., et al. (2012) Journal of Applied Polymer Science, 126, E501.
http://dx.doi.org/10.1002/app.36803

[6]   Navaneetha Pandiyaraj, K., Selvarajan, V., Deshmukh, R.R., et al. (2009) Applied Surface Science, 255, 3965.
http://dx.doi.org/10.1016/j.apsusc.2008.10.090

[7]   Yuan, X. and Mike Chung, T.C. (2011) Applied Physics Letters, 98, Article ID: 062901.

[8]   Lin, Y., Hiltner, A. and Baer, E. (2010) Polymer, 51, 5807.
http://dx.doi.org/10.1016/j.polymer.2010.09.070

[9]   Lehocky, M., Drnovska, H., Lapcikova, B., et al. (2003) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 222, 125.
http://dx.doi.org/10.1016/S0927-7757(03)00242-5

[10]   Zheng, B.C., Wang, K.S. and Lei, M.K. (2015) Plasma Science and Technology, 17, 309.
http://dx.doi.org/10.1088/1009-0630/17/4/09

[11]   Chu, P.K., Chen, J.Y., Wang, L.P. and Huang, N. (2002) Materials Science and Engineering: R: Reports, 36, 143-206.
http://dx.doi.org/10.1016/S0927-796X(02)00004-9

[12]   Kostov, K.G., Nishime, T.M.C., Castro, A.H.R., Toth, A. and Hein, L.R.O. (2014) Applied Surface Science, 314, 367-375.
http://dx.doi.org/10.1016/j.apsusc.2014.07.009

[13]   Shenton, M.J. and Stevens, G.C. (2001) Journal of Physics D: Applied Physics, 34, 2761-2768.
http://dx.doi.org/10.1088/0022-3727/34/18/308

[14]   Yousefi, R.H., Ghoranneviss, M., Tehrani, A.R. and Khamseh, S. (2003) Surface and Interface Analysis, 35, 1015-1017.
http://dx.doi.org/10.1002/sia.1633

[15]   Ring, A., Tilkorn, D.J., Goertz, O., Langer, S., Schaffran, A., Awakowicz, P. and Hauser, J. (2011) Journal of Orthopaedic Research, 29, 1237-1244.
http://dx.doi.org/10.1002/jor.21358

[16]   Pandiyaraj, K.N., Selvarajan, V., Deshmukh, R.R., Yoganand, P., Balasubramanian, S. and Maruthamuthu, S. (2013) Plasma Science and Technology, 15, 56-63.
http://dx.doi.org/10.1088/1009-0630/15/1/10

[17]   Zhou, L., Lü, G.H., Chen, W., et al. (2011) Chinese Physics B, 20, 329.

[18]   Kostov, K.G., dos Santos, A.L.R., Nascente, P.A.P., Kayama, M.E., Mota, R.P. and Algatti, M.A. (2012) Journal of Applied Polymer Science, 125, 4121-4127.
http://dx.doi.org/10.1002/app.35290

[19]   Novák, I., Steviar, M., Popelka, A., Chodák, I., Mosnácek, J., Spírková, M., et al. (2013) Polymer Engineering and Science, 53, 516-523.
http://dx.doi.org/10.1002/pen.23280

[20]   Anand, V., Ghosh, S., Ghosh, M., Rao, G.M., Railkar, R. and Dighe, R.R. (2011) Applied Surface Science, 257, 8378-8384.
http://dx.doi.org/10.1016/j.apsusc.2011.04.040

[21]   Inagaki, N., Narushima, K., Tsutsui, Y. and Ohyama, Y. (2002) Journal of Adhesion Science and Technology, 16, 1041-1054.
http://dx.doi.org/10.1163/156856102760146156

[22]   Seo, E. (2002) Macromolecular Research, 10, 291-295.
http://dx.doi.org/10.1007/BF03218321

[23]   Yu, H.Y., He, X.C., Liu, L.Q., Gu, J.S. and Wei, X.W. (2007) Water Research, 41, 4703-4709.
http://dx.doi.org/10.1016/j.watres.2007.06.039

[24]   Pimanpang, S., Wang, P., Ye, D., Juneja, J.S., Wang, G.C. and Lu, T.M. (2007) Journal of the Electrochemical Society, 154, G215-G219.
http://dx.doi.org/10.1149/1.2766606

[25]   Wagner, A.J., Fairbrother, D.H. and Reniers, F. (2002) Plasma and Polymers, 8, 109.

[26]   Zhou, J., Li, W., Gu, J. and Yu, H.Y. (2010) Membrane Water Treatment, 1, 83-92.
http://dx.doi.org/10.12989/mwt.2010.1.1.083

[27]   Svorcík, V., Kolárová, K., Slepicka, P., Bláhová, O., Spírková, M., Sajdl, P. and Hnatowicz, V. (2006) Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 244, 365-372.
http://dx.doi.org/10.1016/j.nimb.2005.10.003

[28]   Cui, N.Y. and Brown, N.M.D. (2002) Applied Surface Science, 189, 31-38.
http://dx.doi.org/10.1016/S0169-4332(01)01035-2

 
 
Top