[1] Ouyang, Q. (2010) Nonlinear Science and Pattern Dynamics. Peking University Press, Beijing.
[2] Ouyang, Q. (2000) Reaction Diffusion System Pattern Dynamics. Shanghai Science and Technology Education Press, Shanghai.
[3] Liu, P.P. (2009) A Ratio Dependent Predator-Prey Model of Spatial Pattern Formation Research. Mathematics in Practice and Theory, 39, 114-119.
[4] Wang, Y., Cao, J.D., Sun, G.-Q. and Li, J. (2014) Effect of Time Delay on Pattern Dynamics in a Spatial Epidemic Model. Physica A: Statistical Mechanics and Its Applications, 412, 137-148.
http://dx.doi.org/10.1016/j.physa.2014.06.038
[5] Parshad, R.D., Kumari, N., Kasimov, A.R. and Abderrahmane, H.A. (2013) Turing Patterns and Long-Time Behavior in a Three-Species Food-Chain Model. Mathematical Biosciences, 254, 83-102.
http://dx.doi.org/10.1016/j.mbs.2014.06.007
[6] Liu, S.H. and Gu, Y.X. (2012) Coupled Reaction-Diffusion System in the Superlattice Pattern. Hebei University (Natural Science Edition), 32, 597-601.
[7] Du, Y.-K. and Xu, R. (2014) Pattern Formation in Two Classes of SIR Epidemic Models with Spatial Diffusion. Chinese Journal of Engineering Mathematics, 31, 454-462.
[8] Li, X.Z., Bai, Z.G., Li, Y., Zhao, K. and He, Y.F. (2013) Double Nonlinear Coupling Reaction-Diffusion Systems in Complex Turing Patterns. Chinese Journal of Physics, 62, 220503-1 -220503-7.