IJMPCERO  Vol.4 No.4 , November 2015
Comparative Study on the Surface Dose of Some Bolus Materials
ABSTRACT
In order to investigate the possibility of using different materials as bolus in radiotherapy, five samples denoted by S2 - S6 were prepared and analyzed by comparison with one available commercial bolus denoted by S1. Sample S1 was a thermoplastic material from Qfix; S2 was a moldable silicon rubber (RTV-530 from Prochima); S3 and S4 were obtained by adding micrometric particles of Al and Cu respectively (at the same mass concentration of 5.5%); S5 was another moldable silicon rubber (GSP400 from Prochima) and S6 was a mixture of GSP400 and micrometric particles of Cu (at the mass concentration of 5.5%). The measurements of normalized transmitted dose as a function of sample thickness were performed for all samples (S1 - S6) at two values of electron beam energy (6 and 9 MeV) produced by a linear accelerator VARIAN 2100SC. The results showed that the maximum of the normalized transmitted dose of manufactured samples (S2 - S6) is registered at smaller sample thicknesses than for the analyzed commercial bolus (sample S1). The smallest sample thickness corresponding to normalized maximum point dose is obtained for sample S2 (RTV-530). Measurements performed for electron beam energy of 6 and 9 MeV have proven the possibility of using the manufactured samples as bolus in radiotherapy.

Cite this paper
Malaescu, I. , Marin, C. and Spunei, M. (2015) Comparative Study on the Surface Dose of Some Bolus Materials. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 4, 348-352. doi: 10.4236/ijmpcero.2015.44041.
References
[1]   Vyas, V., Palmer, L., Mudge, R., Jiang, R., Fleck, A., Schaly, B., Osei, E. and Charland, P. (2013) On Bolus for Megavoltage Photon and Electron Radiation Therapy. Medical Dosimetry, 38, 268-273.
http://dx.doi.org/10.1016/j.meddos.2013.02.007

[2]   Kudchadker, R.J., Antolak, J.A., Morrison, W.H., Wong, P.F. and Hogstrom, K.R. (2003) Utilization of Custom Electron Bolus in Head and Neck Radiotherapy. Journal of Applied Clinical Medical Physics, 4, 321-333.
http://dx.doi.org/10.1120/1.1621494

[3]   Kim, M.M., Kudchadker, R.J., Kanke, J.E., Zhang, S. and Perkins, G.H. (2012) Bolus Electron Conformal Therapy for the Treatment of Recurrent Inflammatory Breast Cancer: A Case Report. Medical Dosimetry, 37, 208-213.
http://dx.doi.org/10.1016/j.meddos.2011.07.004

[4]   Catalano, G., Canino, P., Cassinotti, M., Pagella, S., Piazzi, V., Re, S., Wizemann, G. and Bucci, E. (2010) Ultrasound Transmission Gel as a Bolus Device for Skin Irradiation of Irregular Surfaces: Technical Note. Radiologia Medica, 115, 975-982.
http://dx.doi.org/10.1007/s11547-010-0546-8

[5]   Nagata, K., Lattimer, J.C. and March, J.S. (2012) The Electron Beam Attenuating Properties of Superflab, Play-Doh, and Wet Gauze, Compared to Plastic Water. Veterinary Radiology & Ultrasound, 53, 96-100.
http://dx.doi.org/10.1111/j.1740-8261.2011.01866.x

[6]   Humphries, S.M., Boyd, K., Cornish, P. and Newman, F.D. (1996) Comparison of Super Stuff and Paraffin Wax Bolus in Radiation Therapy of Irregular Surfaces. Medical Dosimetry, 21, 155-157.
http://dx.doi.org/10.1016/0958-3947(96)00076-3

[7]   Huang, K.M., Hsu, C.H., Jeng, S.C., Ting, L.L., Cheng, J.C. and Huang, W.T. (2006) The Application of Aquaplast Thermoplastic as a Bolus Material in the Radiotherapy of a Patient with Classic Kaposi’s Sarcoma at the Lower Extremity. Anticancer Research, 26, 759-762.

[8]   http://www.orfit.com/en/bolus-materials/

[9]   http://www.qfix.com/qfix-products/aids-and-accessories.asp?CID=10&PLID=51

[10]   Günhan, B., Kemikler, G. and Koca, A. (2003) Determination of Surface Dose and the Effect of Bolus to Surface Dose in Electron Beams. Medical Dosimetry, 28, 193-198.
http://dx.doi.org/10.1016/S0958-3947(03)00072-4

[11]   Spunei, M., Malaescu, I., Mihai, M. and Marin, C.N. (2014) Absorbing Materials with Applications in Radiotherapy and Radioprotection. Radiation Protection Dosimetry, 162, 167-170.
http://dx.doi.org/10.1093/rpd/ncu252

[12]   Khan, Y., Villarreal-Barajas, J.E., Udowicz, M., Sinha, R., Muhammad, W., Abbasi, A.N. and Hussain, A. (2013) Clinical and Dosimetric Implications of Air Gaps between Bolus and Skin Surface during Radiation Therapy. Journal of Cancer Therapy, 4, 1251-1255.
http://dx.doi.org/10.4236/jct.2013.47147

[13]   http://www.prochima.com/ENG/product.asp?id=7

[14]   Weaver, R.D., Gerbi, B.J. and Dusenbery, K.E. (1998) Evaluation of Eye Shields Made of Tungsten and Aluminum in High-Energy Electron Beams. International Journal of Radiation Oncology Biology Physics, 41, 233-237.
http://dx.doi.org/10.1016/S0360-3016(97)00905-X

[15]   Kinhikar, R.A., Tambe, C.M., Upreti, R.R., Patkar, S., Patil, K. and Deshpande, D.D. (2008) Phantom Dosimetric Study of Nondivergent Aluminum Tissue Compensator Using Ion Chamber, TLD, and Gafchromic Film. Medical Dosimetry, 33, 286-292.
http://dx.doi.org/10.1016/j.meddos.2007.12.001

[16]   http://www.prochima.com/ENG/product.asp?id=8

 
 
Top