[1] Ross, R. (1999) Atherosclerosis Is an Inflammatory Disease. American Heart Journal 138, S419-S420.
http://dx.doi.org/10.1016/s0002-8703(99)70266-8
[2] Libby, P. (2002) Inflammation in Atherosclerosis. Nature, 420, 868-874.
http://dx.doi.org/10.1038/nature01323
[3] Lusis, A.J. (2000) Atherosclerosis. Nature, 407, 233-241.
http://dx.doi.org/10.1038/35025203
[4] Cybulsky, M.I., Iiyama, K., Li, H., Zhu, S., Chen, M., Iiyama, M., Davis, V., Gutierrez-Ramos, J.C., Connelly, P.W. and Milstone, D.S. (2001) A Major Role for VCAM-1, but Not ICAM-1, in Early Atherosclerosis. Journal of Clinical Investigation, 107, 1255-1262.
http://dx.doi.org/10.1172/JCI11871
[5] Binder, C.J., Hartvigsen, K., Chang, M.K., Miller, M., Broid, D., Palinski, W., Curtiss, L.K., Corr, M. and Witztum, J.L. (2004) IL-5 Links Adaptative and Natural Immunity Specific for Epitopes of Oxidized LDL and Protects from Atherosclerosis. Journal of Clinical Investigation, 114, 427-437.
http://dx.doi.org/10.1172/JCI200420479
[6] Brand, K., Eisele, T., Kreusel, U., Page, M., Page, S., Haas, M., Gerling, A., Kaltschmidt, C., Neumann, F.J., Mackman, N., Baeurele, P.A., Walli, A.K. and Neumeier, D. (1997) Dysregulation of Monocytic Nuclear Factor-κB by Oxidized Low-Density Lipoprotein. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 1901-1909.
http://dx.doi.org/10.1161/01.ATV.17.10.1901
[7] Muller, J.R. and Siebenlist, U. (2003) Lymphotoxinbeta Receptor Induces Sequential Activation of Distinct NF-κB Factors via Separate Signaling Pathways. The Journal of Biological Chemistry, 278, 12006-12012.
http://dx.doi.org/10.1074/jbc.M210768200
[8] Collins, T. and Cybulsky, M.I. (2001) NF-κB: Pivotal Mediator or Innocent Bystander in Atherogenesis? Journal of Clinical Investigation, 107, 255-264.
http://dx.doi.org/10.1172/JCI10373
[9] Berliner, J.A., Territo, M.C., Sevanian, A., Ramin, S., Kim, J.A., Bamshad, B., Esterson, M. and Fogelman, A.M. (1990) Minimally Modified Low-Density Lipoprotein Stimulates Monocyte Endothelial Interactions. Journal of Clinical Investigation, 85, 1260-1266.
http://dx.doi.org/10.1172/JCI114562
[10] Dechend, R., Maass, M., Gieffers, J., Dietz, R., Scheidereit, C., Leutz, A. and Gulba, D.C. (1999) Chlamydia Pneumoniae Infection of Vascular Smooth Muscle and Endothelial Cells Activates NF-κB and Induces Tissue Factor and PAI- 1 Expression: A Potential Link to Accelerated Arteriosclerosis. Circulation, 100, 1369-1373.
http://dx.doi.org/10.1161/01.CIR.100.13.1369
[11] Maia, I.L., Nicolau, J.C., Machado, M.N., et al. (2005) Prevalência de Chlamydia pneumoniaee Mycoplasma pneu- moniae em diferentes formas de doença coronariana. Arquivos Brasileiros de Cardiologia, 92, 439-445.
[12] Winther, M.P.J., Kanters, E., Kraal, G. and Hofker, M.H. (2005) Nuclear Factor κB Signaling in Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 904-914.
http://dx.doi.org/10.1161/01.ATV.0000160340.72641.87
[13] Brach, M.A., Henschler, R., Mertelsmann, R.H. and Herrmann, F. (1991) Regulation of M-CSF Expression by M-CSF: Role of Protein Kinase C and Transcription Factor NF-κB. Pathobiology, 59, 284-288.
http://dx.doi.org/10.1159/000163664
[14] Bond, M., Fabunmi, R.P., Baker, A.H. and Newby, A.C. (1998) Synergistic Upregulation of Metalloproteinase-9 by Growth Factors and Inflammatory Cytokines: An Absolute Requirement for Transcription Factor NF-κB. FEBS Letters, 435, 29-34.
http://dx.doi.org/10.1016/S0014-5793(98)01034-5
[15] Galis, Z.S., Johnson, C., Godin, D., Magid, R., Shipley, J.M., Senior, R.M. and Ivan, E. (2002) Targeted Disruption of the Matrix Metalloproteinase-9 Gene Impairs Smooth Muscle Cell Migration and Geometrical Arterial Remodeling. Circulation Research, 91, 852-859.
http://dx.doi.org/10.1161/01.RES.0000041036.86977.14
[16] Shah, K.P. and Galis, Z.S. (2001) Matrix Metalloproteinase Hypothesis of Plaque Rupture Players Keep Piling up but Questions Remain. Circulation, 104, 1878-1880.
[17] Packard, R.R.S. and Libby, P. (2008) Inflammation in Atherosclerosis: From Vascular Biology to Biomarker Discovery and Risk Prediction. Clinical Chemistry, 54, 24-38.
http://dx.doi.org/10.1373/clinchem.2007.097360
[18] Roggerio, A., Sambiase, N.V., Palomino, S.A.P., Castro, M.A.P., Silva, E.S., Stolf, N.G. and Higuchi, M.L. (2013) Correlation of Bacterial Coinfection versus Matrix Metalloproteinase 9 and Tissue Inhibitor of Metalloproteinase 1 Expression in Aortic Aneurysm and Atherosclerosis. Annals of Vascular Surgery, 27, 964-971.
http://dx.doi.org/10.1016/j.avsg.2013.02.012
[19] Higuchi, M.L., Reis, M.M., Sambiase, N.V., Palomino, S.A.P., Castelli, J.B., Gutierrez, O.S., Aiello, V.D. and Ramires, J.A.F. (2003) Co-infecção por Mycoplasma pneumoniae e Chlamydia pneumoniae em Placas Rotas associadas a Infarto Agudo do Miocárdio. Arquivos Brasileiros de Cardiologia, 81, 1-11.
[20] Assis, R.M., Higuchi, M.L., Reis, M.M., Palomino, S.A.P., Hirata, R.D.C. and Hirata, M.H. (2014) Involvement of TLR2 and TLR4, Chlamydophila pneumoniae and Mycoplasma pneumoniae in Adventitial Inflammation of Aortic Atherosclerotic Aneurysm. World Journal of Cardiovascular Diseases, 4, 14-22.
http://dx.doi.org/10.4236/wjcd.2014.41004
[21] Ikegami, R.N., Kawakami, J.T., Abdalla, D.S.P., Santos, R.D., Filho, R.K., Ramires, J.A.F. and Higuchi, M.L. (2015) Infection and Microparticles May Cause Complication of Atherosclerotic Plaques. Journal of Diabetes & Metabolism, 6, 1-4.
http://dx.doi.org/10.4172/2155-6156.1000537
[22] Higuchi, M.L., Santos, M.H.H., Fagundes, R.Q., Palomino, S.A.P. and Reis, M.M. (2011) Trans-Sialidase from Trypanosoma cruzi: Na Anti-Atherosclerotic Drug. Proceedings of the Keystone Symposia on Molecular and Cellular Biology—Drugs from Bugs: The Anti-Inflammatory Drugs of Tomorrow, Snowbird Resort, 3-7 April 2011, 66.
[23] Santos, M.H.H., Ikegami, R.N., Reis, M.M., Fagundes, R.Q. and Higuchi, M.L. (2007) A New Therapeutic Proposal for Lipid Lowering Treatment: Association of Transialidase and Anti-Oxidant Elements. Na Experimental Study in Rabbits. Proceedings of the XVI International Symposium on Drugs Affecting Lipid Metabolism—DALM, New York, 4-7 October 2007, 474.
[24] Greenberg, S. and Grinstein, S. (2002) Phagocytosis and Innate Immunity. Current Opinion in Immunology, 14, 136- 145.
http://dx.doi.org/10.1016/S0952-7915(01)00309-0
[25] Hansson, G.K., Libby, P., Schonbeck, U. and Yan, Z.Q. (2002) Innate and Adaptive Immunity in the Pathogenesis of Atherosclerosis. Circulation Research, 91, 281-291.
http://dx.doi.org/10.1161/01.RES.0000029784.15893.10
[26] Iyama, K., Zhang, S. and Lo, S.C. (2001) Effects of Mycoplasmal LAMPs on Receptor Responses to Steroid Hormones in Mammalian Cells. Current Microbiology, 43, 163-169.
http://dx.doi.org/10.1007/s002840010281
[27] Wise, K.S., Kim, M.F., Theiss, P.M. and Lo, S.C. (1993) A Family of Strain-Variant Surface Lipoproteins of Mycoplasma fermentans. Infection and Immunity, 61, 3327-3333.
[28] Pucci, B., Kasten, M. and Giordano, A. (2000) Cell Cycle and Apoptosis. Neoplasia, 2, 291-299.
http://dx.doi.org/10.1038/sj.neo.7900101
[29] Muneta, Y., Uenishi, H., Kikuma, R., Yoshihara, K., Shimoji, Y., Yamamoto, R., Hamashina, N., Yokomizo, Y. and Mori, Y. (2003) Porcine TLR2 and TLR6: Identification and Their Involvement in Mycoplasma hyopneumoniae Infection. Journal of Interferon & Cytokine Research, 23, 583-590.
http://dx.doi.org/10.1089/107999003322485080
[30] You, X., Yimou, W., Zeng, Y., Deng, Z., Qiu, H. and Minjun, Y. (2008) Mycoplasma genitalium-Derived Lipid- Associated Membrane Proteins Induce Activation of MAPKs, NF-kB and AP-1 in THP-1 Cells. FEMS Immunology & Medical Microbiology, 52, 228-236.
http://dx.doi.org/10.1111/j.1574-695X.2007.00366.x
[31] May, M.J. and Ghosh, S. (1998) Signal Transduction through NF-κB. Immunology Today, 19, 80-88.
http://dx.doi.org/10.1016/S0167-5699(97)01197-3
[32] Siebenlist, U., Franzoso, G. and Brown, K. (1994) Structure, Regulation and Function of NF-κB. Annual Review of Cell Biology, 10, 405-455.
http://dx.doi.org/10.1146/annurev.cb.10.110194.002201