ANP  Vol.4 No.4 , November 2015
Thermal Stability and Hot Carrier Dynamics of Gold Nanoparticles of Different Shapes
ABSTRACT
Anisotropic shapes of gold nanoparticles are prepared using a modified seed method in the presence of silver ions or clusters in order to study the thermal stability and the dynamics of the hot carriers induced by femtosecond laser pulses. Although gold nanospheres are stable towards thermal treatment, the decomposition of the gold nanorods into spherical nanoparticle aggregates upon thermal treatment is mechanistically different from the case of nanoprisms. Great enhancement of thermal stability is achieved by modifying the surface of the nanoparticles by adding specific amounts of polyvinyl pyrrolidone (PVP) after preparation of gold particles of different shapes capped with cetyltrimethylammonium bromide (CTAB). The surface plasmon resonance spectra of the gold nanostructures are used to monitor their morphological changes. In regards to the hot carrier dynamics, it is found that the phonon-phonon (ph-ph) coupling is much slower in dots than in rods and prisms while electron-phonon (e-ph) coupling is almost the same in these particles.

Cite this paper
Attia, Y. , Altalhi, T. and Gobouri, A. (2015) Thermal Stability and Hot Carrier Dynamics of Gold Nanoparticles of Different Shapes. Advances in Nanoparticles, 4, 85-97. doi: 10.4236/anp.2015.44010.
References
[1]   Murphy, C.J., Sau, T.K., Gole, A.M., Orendorff, C.J., Gao, J., Gou, L., Hun Yadi, S.E. and Li, T. (2005) Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications. The Journal of Physical Chemistry B, 109, 13857-13870.
http://dx.doi.org/10.1021/jp0516846

[2]   Shi, W., Zeng, H., Sahoo, Y., Ohulchansky, T.Y., Ding, Y., Wang, Z.L., Swihart, M. and Prasad, P.N. (2006) A General Approach to Binary and Ternary Hybrid Nanocrystals. NANO Letters, 6, 875-881.
http://dx.doi.org/10.1021/nl0600833

[3]   Liang, H.-P., Wan, L.-J., Bai, C.-L. and Jiang, L.J. (2005) Gold Hollow Nanospheres: Tunable Surface Plasmon Resonance Controlled by Interior-Cavity Sizes. The Journal of Physical Chemistry B, 109, 7795-7800.
http://dx.doi.org/10.1021/jp045006f

[4]   Jana, N.R., Gearheart, L. and Murphy, C.J. (2001) Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles. Chemistry of Materials, 13, 2313-2322.
http://dx.doi.org/10.1021/cm000662n

[5]   Nikoobakht, B. and El-Sayed, M.A. (2001) Evidence for Bilayer Assembly of Cationic Surfactants on the Surface of Gold Nanorods. Langmuir, 17, 6368-6374.
http://dx.doi.org/10.1021/la010530o

[6]   Nikoobakht, B. and El-Sayed, M.A. (2003) Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chemistry of Materials, 15, 1957-1962.
http://dx.doi.org/10.1021/cm020732l

[7]   El-Sayed, M.A. (2001) Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes. Accounts of Chemical Research, 34, 257-264.
http://dx.doi.org/10.1021/ar960016n

[8]   Link, S. and El-Sayed, M.A. (2000) Shape and Size Dependence of Radiative, Non-Radiative and Photothermal Properties of Gold Nanocrystals. International Reviews in Physical Chemistry, 19, 409-453.
http://dx.doi.org/10.1080/01442350050034180

[9]   Link, S. and El-Sayed, M.A. (2003) Optical Properties and Ultrafast Dynamics of Metallic Nanocrystals. Annual Review of Physical Chemistry, 54, 331-366.
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103759

[10]   Link, S., Burda C., Wang Z.L. and El-Sayed, M.A. (1999) Electron Dynamics in Gold and Gold-Silver Alloy Nanoparticles: The Influence of a Nonequilibrium Electron Distribution and the Size Dependence of the Electron-Phonon Relaxation. The Journal of Chemical Physics, 111, 1255-1264.
http://dx.doi.org/10.1063/1.479310

[11]   Mohamed, M.B., Ahmadi, T.S., Link, S., Braun, M. and El-Sayed, M.A. (2001) Hot Electron and Phonon Dynamics of Gold Nanoparticles Embedded in a Gel Matrix. Chemical Physics Letters, 343, 55-63.
http://dx.doi.org/10.1016/S0009-2614(01)00653-4

[12]   Link, S., Furube, A., Mohamed, M.B., Asahi, T., Masuhara, H. and El-Sayed, M.A. (2002) Hot Electron Relaxation Dynamics of Gold Nanoparticles Embedded in MgSO4 Powder Compared to Solution: The Effect of the Surrounding Medium. The Journal of Physical Chemistry B, 106, 945-955.
http://dx.doi.org/10.1021/jp013311k

[13]   Link, S., Hathcock, D.J., Nikoobakht, B. and El-Sayed, M.A. (2003) Medium Effect on the Electron Cooling Dynamics in Gold Nanorods and Truncated Tetrahedra. Advanced Materials, 15, 393-396.
http://dx.doi.org/10.1002/adma.200390088

[14]   Cao, J.G., El-Sayed, A.H., Miller, R.J. and Mantell, D.A. (1998) Femtosecond Photoemission Study of Ultrafast Electron Dynamics in Single-Crystal Au(111) Films. Physical Review B, 58, 10948-10952.
http://dx.doi.org/10.1103/PhysRevB.58.10948

[15]   Ogawa, S., Nagano, H. and Petek, H. (1998) Stability of a Photoinduced Insulator-Metal Transition in Pr1?xCaxMnO3. Physical Review B, 57, Article ID: R15033.
http://dx.doi.org/10.1103/PhysRevB.57.R15033

[16]   Shahbazyan, T.V. and Perakis, I.E. (2000) Surface Collective Excitations in Ultrafast Pump-Probe Spectroscopy of Metal Nanoparticles. Chemical Physics, 251, 37-49.
http://dx.doi.org/10.1016/S0301-0104(99)00311-0

[17]   Hodak, J.K., Martini, I. and Hartland, G.V. (1998) Spectroscopy and Dynamics of Nanometer-Sized Noble Metal Particles. The Journal of Physical Chemistry B, 102, 6958-6967.
http://dx.doi.org/10.1021/jp9809787

[18]   Bigot, J.Y., Merle, J.C., Cregut, O. and Daunois, A. (1995) Electron Dynamics in Copper Metallic Nanoparticles Probed with Femtosecond Optical Pulses. Physical Review Letters, 75, 4702-4705.
http://dx.doi.org/10.1103/PhysRevLett.75.4702

[19]   Shahbazyan, T.V., Perakis, I.E. and Bigot, J.Y. (1998) Size-Dependent Surface Plasmon Dynamics in Metal Nanoparticles. Physical Review Letters, 81, 3120-3123.
http://dx.doi.org/10.1103/PhysRevLett.81.3120

[20]   Roberti, T.W., Smith, B.A. and Zhang, J.Z. (1995) Ultrafast Electron Dynamics at the Liquid-Metal Interface: Femtosecond Studies Using Surface Plasmons in Aqueous Silver Colloid. The Journal of Chemical Physics, 102, 3860.
http://dx.doi.org/10.1063/1.468545

[21]   Faulhaber, A.E., Smith, B.A., Andersen, J.K. and Zhang, J.Z. (1996) Femtosecond Electronic Relaxation Dynamics in Metal Nano-Particles: Effects of Surface and Size Confinement. Molecular Crystals and Liquid Crystals Science and Technology, 283, 25-30.
http://dx.doi.org/10.1080/10587259608037859

[22]   Smith, B.A., Zhang, J.Z., Giebel, U. and Schmid, G. (1997) Direct Probe of Size-Dependent Electronic Relaxation in Single-Sized Au and Nearly Monodisperse Pt Colloidal Nano-Particles. Chemical Physics Letters, 270, 139-144.
http://dx.doi.org/10.1016/S0009-2614(97)00339-4

[23]   Del Fatti, N., Flytzanis, C. and Vallee, F. (1999) Ultrafast Induced Electron-Surface Scattering in a Confined Metallic System. Applied Physics B, 68, 433-437.
http://dx.doi.org/10.1007/s003400050645

[24]   Hodak, J.K., Martini, I. and Hartland, G.V. (1998) Ultrafast Study of Electron-Phonon Coupling in Colloidal Gold Particles. Chemical Physics Letters, 284, 135-141.
http://dx.doi.org/10.1016/S0009-2614(97)01369-9

[25]   Smith, B.A., Waters, D.M., Faulhaber, A.E., Kreger, M.A., Roberti, T.W. and Zhang, J.Z. (1997) Preparation and Ultrafast Optical Characterization of Metal and Semiconductor Colloidal Nano-Particles. Journal of Sol-Gel Science and Technology, 9, 125-137.

[26]   Hodak, J.K., Martini, I. and Hartland, G.V. (2000) Electron-Phonon Coupling Dynamics in Very Small (Between 2 and 8 nm Diameter) Au Nanoparticles. The Journal of Chemical Physics, 112, 5942.
http://dx.doi.org/10.1063/1.481167

[27]   Sun, Y. and Xia, Y.J. (2004) Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium. Journal of the American Chemical Society, 126, 3892-3901.
http://dx.doi.org/10.1021/ja039734c

[28]   Mohamed, B.M., Ismail, K.Z., Link, S. and El-Sayed, M.A. (1998) Thermal Reshaping of Gold Nanorods in Micelles. The Journal of Physical Chemistry B, 102, 9370-9374.
http://dx.doi.org/10.1021/jp9831482

[29]   Petrova, H., Perez Juste, J., Pastoriza-Santos, I., Hartland, G.V., Liz-Marzan, L.M. and Mulvaney, P. (2006) On the Temperature Stability of Gold Nanorods: Comparison between Thermal and Ultrafast Laser-Induced Heating. Physical Chemistry Chemical Physics, 8, 814-821.
http://dx.doi.org/10.1039/B514644E

[30]   Veith, G.M., Lupini, A.R., Rashkeev, S., Pennycook, S.J., Mullins, D.R., Schwartz, V., Bridges, C.A. and Dudney, N.J. (2009) Thermal Stability and Catalytic Activity of Gold Nanoparticles Supported on Silica. Journal of Catalysis, 262, 92-101.
http://dx.doi.org/10.1016/j.jcat.2008.12.005

[31]   Al-Sherbini, M.E. (2010) UV-Visible Light Reshaping of Gold Nanorods. Materials Chemistry and Physics, 121, 349-353.
http://dx.doi.org/10.1016/j.matchemphys.2010.01.048

[32]   Al-Sherbini, M.E. (2004) Thermal Instability of Gold Nanorods in Micellar Solution of Water/Glycerol Mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 246, 61-69.
http://dx.doi.org/10.1016/j.colsurfa.2004.06.038

[33]   Zou, R.X., Zhang, Q., Zhao, Q., Peng, F., Wang, H.J., Yu, H. and Yang, J. (2010) Thermal Stability of Gold Nanorods in an Aqueous Solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 372, 177-181.
http://dx.doi.org/10.1016/j.colsurfa.2010.10.012

[34]   Attia, Y., Buceta, D., Blanco-Varela, C., Mohamed, M., Barone, G. and Lo?pez-Quintela, M.A. (2014) Structure-Directing and High-Efficiency Photocatalytic Hydrogen Production by Ag Clusters. Journal of the American Chemical Society, 136, 1182-1185.

[35]   Attia, Y., Flores-Arias, M., Nieto, D., Vázquez-Vázquez, C., De La Fuente, G. and López-Quintela, M. (2015) Transformation of Gold Nanorods in Liquid Media Induced by nIR, Visible, and UV Laser Irradiation. The Journal of Physical Chemistry C, 119, 13343-13349.

[36]   Attia, Y., Buceta, D., Requejo, F., Giovanetti, L. and López-Quintela, M. (2015) Photostability of Gold Nanoparticles with Different Shapes: The Role of Ag Clusters. Nanoscale, 7, 11273-11279.
http://dx.doi.org/10.1039/C5NR01887K

[37]   Ledo-Suárez, A., Rivas, J., Rodríguez-Abreu, C.F., Rodríguez, M.J., Pastor, E., Hernández-Creus, A., Oseroff, S.B. and López-Quintela, M.A. (2007) Facile Synthesis of Stable Subnanosized Silver Clusters in Microemulsions. Angewandte Chemie International Edition, 46, 8823-8827.
http://dx.doi.org/10.1002/anie.200702427

[38]   Rodríguez-Vázquez, M.J., Blanco, M.C., Lourido, R., Vázquez-Vázquez, C., Pastor, E., Planes, G.A., Rivas, J. and López-Quíntela, M.A. (2008) Synthesis of Atomic Gold Clusters with Strong Electrocatalytic Activities. Langmuir, 24, 12690-12694.
http://dx.doi.org/10.1021/la8018474

[39]   Wang, Z.L., Mohamed, M.B., Link, S. and El-Sayed, M.A. (1999) Crystallographic Facets and Shapes of Gold Nanorods of Different Aspect Ratios. Surface Science, 440, L809-L814.
http://dx.doi.org/10.1016/S0039-6028(99)00865-1

[40]   Marzbanrad, E., Rivers, G., Peng, P., Zhaoac, B. and Zhou, N.Y. (2015) How Morphology and Surface Crystal Texture Affect Thermal Stability of a Metallic Nanoparticle: The Case of Silver Nanobelts and Pentagonal Silver Nanowires. Physical Chemistry Chemical Physics, 17, 315-324.
http://dx.doi.org/10.1039/C4CP04129A

[41]   Wang, Z.L. (2000) Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies. The Journal of Physical Chemistry B, 104, 1153-1175.
http://dx.doi.org/10.1021/jp993593c

[42]   Chen, J., Wiley, B.J. and Xia, Y. (2007) One-Dimensional Nanostructures of Metals: Large-Scale Synthesis and Some Potential Applications. Langmuir, 23, 4120-4129.
http://dx.doi.org/10.1021/la063193y

[43]   Sun, Y., Mayers, B., Herricks, T. and Xia, Y. (2003) Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence. Nano Letters, 3, 955-960.
http://dx.doi.org/10.1021/nl034312m

[44]   Chen, W. and Chen, S. (2014) RSC Smart Materials No. 7. RSC, Cambridge.

[45]   Piñeiro, Y., Rivas, J. and López-Quintela, M.A. (2014) The Emergence of Quantum Confinement in Atomic Quantum Clusters. In: Berti, D. and Palazzo, G., Eds., Colloidal Foundations of Nanoscience, Elsevier, Amsterdam, 81-105.

 
 
Top