[1] Canny, J. and Reif, J. (1987) New Lower Bound Techniques for Robot Motion Planning Problems. Proceedings IEEE Symposium on Foundations of Computer Science, Los Angeles, 12-14 October 1987, 49-60. http://dx.doi.org/10.1109/sfcs.1987.42
[2] Murphy, L. and Newman, P (2008) Using Incomplete Online Metric Maps for Topological Exploration with the Gap Navigation Tree. IEEE International Conference on Robotics and Automation, Pasadena, 19-23 May 2008, 2792-2797. http://dx.doi.org/10.1109/robot.2008.4543633
[3] Craig, J. (2004) Introduction to Robotics: Mechanics and Control. 3rd Edition, Prentice Hall, Upper Saddle River.
[4] LaValle, S.M. and Hinrichsen, J. (2001) Visibility-Based Pursuit-Evasion: The Case of Curved Environments. IEEE Transactions on Robotics and Automation, 17, 196-201. http://dx.doi.org/10.1109/70.928565
[5] Thrun, S., Burgard, W. and Fox, D. (2005) Probabilistic Robotics. MIT Press, Cambridge.
[6] Thrun, S., Burgard, W. and Fox, D. (1998) Probabilistic Mapping of an Environment by a Mobile Robot. IEEE International Conference on Robotics and Automation, Levene, 16-20 May 1998, 1546-1551.
[7] Elnagar, A. and Lulu, L. (2005) An Art Gallery-Based Approach to Autonomous Robot Motion Planning in Global Environments. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2-6 August 2005, 2079-2084. http://dx.doi.org/10.1109/iros.2005.1545170
[8] Tovar, B., Murrieta-Cid, R. and LaValle, S.M. (2007) Distance-Optimal Navigation in an Unknown Environment without Sensing Distances. IEEE Transactions on Robotics, 23, 506-518. http://dx.doi.org/10.1109/TRO.2007.898962
[9] Nasir, R. and Elnagar, A. (2014) Exploration of Unknown Multiply Connected Environments Using Minimal Sensory Data. In: Zhang, X., et al., Eds., ICIRA 2014, Part I, LNAI 8917, 479-490. http://dx.doi.org/10.1007/978-3-319-13966-1_47
[10] Erdmann, M. (1995) Understanding Action and Sensing by Designing Action-Based Sensors. The International Journal of Robotics Research, 14, 483-509. http://dx.doi.org/10.1177/027836499501400506
[11] Tovar, B., LaValle, S.M. and Murrieta, R. (2003) Optimal Navigation and Object Finding without Geometric Maps or Localization. IEEE International Conference on Robotics and Automation, 1, 464-470.
[12] Tovar, B., LaValle, S.M. and Murrieta, R. (2003) Locally-Optimal Navigation in Multiply-Connected Environments without Geometric Maps. IEEE/RSJ International Conference on Intelligent Robots and Systems, 4, 3491-3497. http://dx.doi.org/10.1109/iros.2003.1249696
[13] Tovar, B., Guilamo, L. and LaValle, S.M. (2005) Gap Navigation Trees: Minimal Representation for Visibility-Based Tasks. Algorithmic Foundations of Robotics VI, Springer Berlin Heidelberg, 425-440.
[14] Yoon, K-J. and Kweon, I. (2002) Landmark Design and Real-Time Landmark Tracking for Mobile Robot Localization. Electrical Engineering, 4573, 219-226.
[15] Bais, A. and Sablatnig, R. (2006) Landmark Based Global Self-Localization of Mobile Soccer Robots. Computer Vision-ACCV, 3852, 842-851. http://dx.doi.org/10.1007/11612704_84
[16] Se, S., Lowe, D. and Little, J. (2002) Mobile Robot Localization and Mapping with Uncertainty Using Scale-Invariant Visual Landmarks. The International Journal of Robotics Research, 21, 735-758. http://dx.doi.org/10.1177/027836402761412467
[17] Zhao, L., Li, R., Zang, T., Sun, L. and Fan, X. (2008) A Method of Landmark Visual Tracking for Mobile Robot. Lecture Notes in Computer Science, 5314, 901-910. http://dx.doi.org/10.1007/978-3-540-88513-9_97