[1] Nonnenmacher, C., Mutters, R. and deJacoby, L.F. (2001) Microbiological Characteristics of Subgingival Microbiota in Adult Periodontitis, Localized Juvenile Periodontitis and Rapidly Progressive Periodontitis Subjects. Clinical Microbiology and Infection, 7, 213-217.
http://dx.doi.org/10.1046/j.1469-0691.2001.00210.x
[2] Wang, P.L. and Ohura, K. (2002) Porphyromonas gingivalis Lipopolysaccharide Signaling in Gingival Fibroblasts-CD14 and Toll-Like Receptors. Critical Reviews in Oral Biology and Medicine, 13, 132-142.
http://dx.doi.org/10.1177/154411130201300204
[3] Dareau, R.P., Arbabi, S., Gracia, I., Bainbridge, B. and Maier, R.V. (2002) Porphyromonas gingivalis Lipopolysaccharide Is Both Agonist and Antagonist for p38 Mitogen-Activated Protein Kinase Activation. Infection and Immunity, 70, 1867-1873.
http://dx.doi.org/10.1128/IAI.70.4.1867-1873.2002
[4] Slomiany, B.L. and Slomiany, A. (2007) Alteration by Indomethacin in Proinflammatory Consequences of Salivary Gland Cytosolic Phospholipase A2 Activation by Porphyromonas gingivalis: Role of Leptin. Journal of Applied Research, 7, 127-136.
[5] Kawai, T. and Akira, S. (2010) The Role of Pattern-Recognition Receptors in Innate Immunity: Update on Toll-Like Receptors. Nature Immunology, 11, 373-384. http://dx.doi.org/10.1038/ni.1863
[6] Slomiany, B.L. and Slomiany, A. (2011) Ghrelin-Induced cSrc Activation through Constitutive Nitric Oxide Synthase-Dependent S-Nitrosylation in Modulation of Salivary Gland Acinar Cell Inflammatory Responses to Porphyromonas gingivalis. American Journal of Molecular Biology, 2, 43-51.
http://dx.doi.org/10.4236/ajmb.2011.12006
[7] Carpenter, S. and O’Neill, L.A.J. (2009) Recent Insights into the Structure of Toll-Like Receptors and Post-Translational Modifications of Their Associated Signaling Proteins. Biochemical Journal, 422, 1-10.
http://dx.doi.org/10.1042/BJ20090616
[8] Garrington, P.T. and Johnson, G.L. (1999) Organization and Regulation of Mitogen-Activated Protein Kinases Signaling Pathways. Current Opinion in Cell Biology, 11, 211-218.
http://dx.doi.org/10.1016/S0955-0674(99)80028-3
[9] Cuadrado, A. and Nebreda, A.R. (2010) Mechanism and Function of p38 MAPK Signaling. Biochemical Journal, 429, 403-417.
http://dx.doi.org/10.1042/BJ20100323
[10] Grishin, A.V., Wang, J., Potoka, D.A., et al. (2006) Lipopolysaccharide Induces Cyclooxygenase-2 in Intestinal Epithelium via a Non-Canonical p38 MAPK Pathway. Journal of Immunology, 176, 580-588.
http://dx.doi.org/10.4049/jimmunol.176.1.580
[11] Slomiany, B.L. and Slomiany, A. (2013) Involvement of p38 MAPK-Dependent Activator Protein (AP-1) Activation in Modulation of Gastric Mucosal Inflammatory Responses to Helicobacter pylori by Ghrelin. Inflammopharmacology, 21, 67-78. http://dx.doi.org/10.1007/s10787-012-0141-9
[12] Finzi, L., Shao, M.X.G., Paye, F., Housset, C. and Nadel, J.A. (2009) Lipopolysaccharide Initiates a Positive Feedback of Epidermal Growth Factor Receptor Signaling by Prostaglandin E2 in Human Biliary Carcinoma Cells. The Journal of Immunology, 182, 2269-2276.
http://dx.doi.org/10.4049/jimmunol.0801768
[13] Hsu, D., Fukata, M., Hernandez, Y.G., Sotolongo, J.P., Goo, T., Maki, J., et al. (2010) Toll-Like Receptor 4 Differentially Regulates Epidermal Growth Factor-Related Growth Factors in Response to Intestinal Mucosal Injury. Laboratory Investigation, 90, 1295-1305.
http://dx.doi.org/10.1038/labinvest.2010.100
[14] McElroy, S.J., Hobbs, S., Kallen, M., Tejera, N., Rosen, M.J., Grishin, A., et al. (2012) Transactivation of EGFR by LPS Induces COX-2 Expression in Enterocytes. PLoS ONE, 7, e38373.
http://dx.doi.org/10.1371/journal.pone.0038373
[15] Slomiany, B.L. and Slomiany, A. (2013) Role of EGFR Transactivation in the Amplification of Helicobacter pylori- Elicited Induction in Gastric Mucosal Expression of COX-2 and iNOS. OA Inflammation, 1, 1.
http://dx.doi.org/10.13172/2052-787X-1-1-412
[16] Trussoni, C.E., Tabibian, J.H., Splinter, P.L. and O’Hara, S.P. (2015) Lipopolysaccharide (LPS)-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR). PLoS ONE, 10, e0125793.
http://dx.doi.org/10.1371/journal.pone.0125793
[17] Carpenter, G. (1999) Employment of the Epidermal Growth Factor Receptor in Growth Factor-Independent Signaling Pathways. Journal of Cell Biology, 146, 697-702.
http://dx.doi.org/10.1083/jcb.146.4.697
[18] Ohsu, H., Dempsey, P. and Eguchi, S. (2006) ADAMs as Mediators of EGF Receptor Transactivation by G Protein-Coupled Receptors. American Journal of Cell Physiology, 291, C1-C10.
http://dx.doi.org/10.1152/ajpcell.00620.2005
[19] Slomiany, B.L. and Slomiany, A. (2004) Porphyromonas gingivalis Lipopolysaccharide-Induced Up-Regulation in Endothelin-1 Interferes with Salivary Mucin Synthesis via Epidermal Growth Factor Receptor Transactivation. IUBMB Life, 56, 601-607.
http://dx.doi.org/10.1080/15216540400020361
[20] Bergin, D.A., Greene, C.M., Sterchi, E.E., Kenna, C., Geraghty, P., Belaaouaj, A., et al. (2008) Activation of the Epidermal Growth Factor Receptor (EGFR) by a Novel Metalloprotease Pathway. Journal of Biological Chemistry, 283, 31736-31744.
http://dx.doi.org/10.1074/jbc.M803732200
[21] Xu, P. and Derynck, R. (2010) Direct Activation of TACE-Mediated Ectodomain Shedding by p38 MAP Kinase Regulates EGF Receptor-Dependent Cell Proliferation. Molecular Cell, 37, 551-566.
http://dx.doi.org/10.1016/j.molcel.2010.01.034
[22] Slomiany, B.L. and Slomiany, A. (2000) Aspirin Ingestion Impairs Oral Mucosal Ulcer Healing by Inducing Membrane-Bound Tumor Necrosis Factor-α Release. IUBMB Life, 50, 391-395.
[23] Kong, L. and Ge, B.X. (2008) MyD88-Independent Activation of a Novel Actin-Cdc42/Rac Pathway Is Required for Toll-Like Receptor-Stimulated Phagocytosis. Cell Research, 18, 745-755.
http://dx.doi.org/10.1038/cr.2008.65
[24] Yao, H.Y., Chen, L.H., Wang, J.Y., Wang, J.R., Chen, J.Q., Xie, Q.M., et al. (2011) Inhibition of Rac Activity Alleviates Lipopolysaccharide-Induced Acute Pulmonary Injury in Mice. Biochimica et Biophysica Acta, 1810, 666-674.
http://dx.doi.org/10.1016/j.bbagen.2011.03.020
[25] Slomiany, B.L. and Slomiany, A. (2015) Porphyromonas gingivalis-Induced GEF Dock180 Activation by Src/PKCδ-Dependent Phosphorylation Mediates PLCγ2 Amplification in Salivary Gland Acinar Cells: Effect of Ghrelin. Journal of Biosciences and Medicines, 3, 66-77.
http://dx.doi.org/10.4236/jbm.2015.37008
[26] Slomiany, A. and Slomiany, B.L. (2012) Phosphatidylglycerol-Containing ER-Transport Vesicles Built and Restore Outer Mitochondrial Membrane and Deliver Nuclear DNA Translation Products to Generate Cardiolipin in the Inner Mitochondrial Membrane. Advances in Biological Chemistry, 2,132-145. http://dx.doi.org/10.4236/abc.2012.22016
[27] Slomiany, B.L. and Slomiany, A. (2010) Suppression by Ghrelin of Porphyromonas gingivalis-Induced Constitutive Nitric Oxide Synthase S-Nitrosylation and Apoptosis in Salivary Gland Acinar Cells. Journal of Signal Transduction, 2010, Article ID: 643642.
http://dx.doi.org/10.1155/2010/643642
[28] Kenny, P.A. and Bisseli, M.J. (2007) Targeting TACE-Dependent EGFR Ligand Shedding in Brest Cancer. Journal of Clinical Investigations, 117, 337-345.
http://dx.doi.org/10.1172/JCI29518
[29] Li, C., Hu, Y., Sturm, G., Wick, G. and Xu, Q. (2000) Ras/Rac-Dependent Activation of p38 Mitogen-Activated Protein Kinase in Smooth Muscle Cells Stimulated by Cyclic Strain Stress. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, e1-e9.
http://dx.doi.org/10.1161/01.ATV.20.3.e1
[30] Wennerberg, K., Rossman, K.L. and Der, C.J. (2005) The Ras Superfamily at Glance. Journal of Cell Science, 118, 843-846.
http://dx.doi.org/10.1242/jcs.01660
[31] Parri, M. and Chiarugi, P. (2010) Rac and Rho GTPases in Cancer Cell Motility Control. Cell Communication and Signaling, 8, 23-37.
http://dx.doi.org/10.1186/1478-811X-8-23
[32] Walliser, C., Retlich, M., Harris, R., Everett, K.L., Josephs, M.B., Vatter, P., et al. (2008) Rac Regulates Its Effector Phospholipase Cγ2 through Interaction with a Split Pleckstrin Homology Domain. Journal of Biological Chemistry, 283, 30351-30362.
http://dx.doi.org/10.1074/jbc.M803316200
[33] Slomiany, B.L. and Slomiany, A. (2015) Mechanism of Rac1-Induced Amplification in Gastric Mucosal Phospholipase Cγ2 Activation in Response to Helicobacter pylori: Modulatory Effect of Ghrelin. Inflammopharmacology, 23, 101-109.
http://dx.doi.org/10.1007/s10787-015-0231-6
[34] Murai, T., Miyauchi, T., Yanagida, T. and Sako, Y. (2006) Epidermal Growth Factor-Regulated Activation of Rac GTPase Enhances CD44 Cleavage by Metalloprotease Disintegrin ADAM10. Biochemical Journal, 395, 65-71.
http://dx.doi.org/10.1042/BJ20050582