AM  Vol.6 No.11 , October 2015
The CARSO (Computer Aided Response Surface Optimization) Procedure in Optimization Studies
ABSTRACT
The paper illustrates innovative ways of using the CARSO (Computer Aided Response Surface Optimization) procedure for response surfaces analyses derived by DCM4 experimental designs in multivariate spaces. Within this method, we show a new feature for optimization studies: the results of comparing their quadratic and linear models for discussing the best way to compute the most reliable predictions of future compounds.

Cite this paper
Fernandi, M. , Baroni, M. , Bazzurri, M. , Benedetti, P. , Chiocchini, D. , Decastri, D. , Ebert, C. , Gardossi, L. , Randazzo, G. and Clementi, S. (2015) The CARSO (Computer Aided Response Surface Optimization) Procedure in Optimization Studies. Applied Mathematics, 6, 1947-1956. doi: 10.4236/am.2015.611172.
References
[1]   Clementi, S., Fernandi, M., Decastri D. and Bazzurri, M. (2014) Mixture Optimization by the CARSO Procedure and DCM Strategies. Applied Mathematics, 5, 3026-3039.
http://dx.doi.org/10.4236/am.2014.519290

[2]   Clementi, S., Fernandi, M., Baroni, M., Decastri, D., Randazzo, G.M. and Scialpi, F. (2012) MAURO: A Novel Strategy for Optimizing Mixture Properties. Applied Mathematics, 3, 1260-1264.
http://dx.doi.org/10.4236/am.2012.330182

[3]   Fernandi, M., Bazzurri, M., Decastri D. and Clementi S. (2015) Experimental Design for Optimizing a Mixture of Materials plus an Evaporating Solvent. Applied Mathematics, 6, 1740-1746.
http://dx.doi.org/10.4236/am.2015.610154

[4]   Clementi, S., Cruciani, G., Curti, G. and Skagerberg, B. (1989) PLS Response Surface Optimization: The CARSO Procedure. Journal of Chemometrics, 3, 499-509.
http://dx.doi.org/10.1002/cem.1180030307

[5]   SIMCA 4.01. www.umetrics.com

[6]   Baroni, M., Costantino, G., Cruciani, G., Riganelli, D., Valigi, R. and Clementi, S. (1993) Generating Optimal Linear PLS Estimations (GOLPE): An Advanced Chemometric Tool for Handling 3D-QSAR Problems. Quantitative Structure-Activity Relationships, 12, 9-20.
http://dx.doi.org/10.1002/qsar.19930120103

[7]   Rosipal, R. (2011) Non Linear Least Squares: An Overview. In: Lodhi, H. and Yamanishi, Y., Eds., Chemoinformatics and Advanced Machine Learning Perspectives: Complex Computational Methods and Collaborative Techniques, ACCM, IGI Global, 169-189.

[8]   Wold, S., Ketteneh-Wold, N. and Skagerberg, B. (1989) Nonlinear PLS Modeling. Chemometrics and Intelligent Laboratory Systems, 7, 53-65.
http://dx.doi.org/10.1016/0169-7439(89)80111-X

 
 
Top