[1] Rousseeuw, P.J. (1984) Least Median of Squares Regression. Journal of the American Statistical Association, 79, 871-880. http://dx.doi.org/10.1080/01621459.1984.10477105
[2] Rousseeuw, P. and Van Driessen, K. (1999) A Fast Algorithm for the Minimum Covariance Determinant Estimator. Technometrics, 41, 212-223. http://dx.doi.org/10.1080/00401706.1999.10485670
[3] Filzmoser, P., Maronna, R. and Werner, M. (2008) Outlier Identification in High Dimensions. Computational Statistics & Data Analysis, 52, 1694-1711. http://dx.doi.org/10.1016/j.csda.2007.05.018
[4] Fritsch, V., Varoquaux, G., Thyreau, B., Poline, J.-B. and Thirion, B. (2011) Detecting Outlying Subjects in High-Dimensional Neuroimaging Datasets with Regularized Minimum Covariance Determinan 225. In: Fichtinger, G., Martel, A. and Peters, T., Eds., Medical Image Computing and Computer-Assisted Intervention MICCAI 2011, Springer, Berlin Heidelberg, 264-271.
[5] Angiulli, F. and Pizzuti, C. (2002) Fast Outlier Detection in High Dimensional Spaces. In: Tapio, E., Heikki, M. and Hannu, T., Eds., Principles of Data Mining and 230 Knowledge Discovery, Springer, Rende, 15-27.http://dx.doi.org/10.1007/3-540-45681-3_2
[6] Aggarwal, C. and Yu, S. (2005) An Effective and Efficient Algorithm for High-Dimensional Outlier Detection. The VLDB Journal, 14, 211-221. http://dx.doi.org/10.1007/s00778-004-0125-5
[7] Ghoting, A., Parthasarathy, S. and Otey, M.E. (2008) Fast Mining of Distance-Based Outliers in High-Dimensional 235 Datasets. Data Mining and Knowledge Discovery, 16, 349-364. http://dx.doi.org/10.1007/s10618-008-0093-2
[8] Kriegel, H.-P., Kröger, P., Schubert, E. and Zimek, A. (2009) Outlier Detection in Axis-Parallel Subspaces of High Dimensional Data. In: Editor, Ed., Advances in Knowledge Discovery and Data Mining, Springer, München, 831-838.http://dx.doi.org/10.1007/978-3-642-01307-2_86
[9] Coppersmith, D. and Winograd, S. (1990) Matrix Multiplication via Arithmetic Progressions. Journal of Symbolic Computation, 9, 251-280. http://dx.doi.org/10.1016/S0747-7171(08)80013-2
[10] Le Gall, F. (2014) Powers of Tensors and Fast Matrix Multiplication. Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, New York, 23-25 July 2014. http://dx.doi.org/10.1145/2608628.2608664
[11] Hubert, M. and Engelen, S. (2004) Robust PCA and Classification in Biosciences. Bioinformatics, 20, 1728-1736. http://dx.doi.org/10.1093/bioinformatics/bth158
[12] Croux, C. and Ruiz-Gazen, A. (1996) A Fast Algorithm for Robust Principal Components Based on Projection Pursuit. In: Prat, A., Ed., COMPSTAT, Springer, Heidelberg, 211-216. http://dx.doi.org/10.1007/978-3-642-46992-3_22
[13] Li, G.Y. and Chen, Z.L. (1985) Projection-Pursuit Approach to Robust Dispersion Matrices and Principal Components: Primary Theory. Journal of the American Statistical Association, 80, 759-766. http://dx.doi.org/10.1080/01621459.1985.10478181
[14] Ho, T.K. (1998) The Random Subspace Method for Constructing Decision Forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 832-844. http://dx.doi.org/10.1109/34.709601
[15] Lopuhaa, H.P. and Rousseeuw, P.J. (1991) Breakdown Points of Affine Equivariant Estimators of Multivariate Location and Covariance. The Annals of Statistics, 19, 229-248. http://dx.doi.org/10.1214/aos/1176347978
[16] Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J. and Williamson, R.C. (1999) Estimating the Support of a High-Dimensional Distribution. Neural Computation, 13, 1443-1471.
[17] Hubert, M., Rousseeuw, P.J. and VandenBranden, K. (2005) Robpca: A New Approach to Robust Principal Component Analysis. Technometrics, 47, 64-79.http://dx.doi.org/10.1198/004017004000000563
[18] Manevitz, L.M. and Yousef, M. (2002) One-Class SVMs for Document Classification. The Journal of Machine Learning Research, 2, 139-154.
[19] Zhang, R., Zhang, S., Muthuraman, S. and Jiang, J. (2007) One Class Support Vector Machine for Anomaly Detection in the Communication. Proceedings of the 5th Conference on Applied Electromagnetics, Wireless and Optical Communications, ELECTROSCIENCE’07, 14-16 December 2007, Tenerife, World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, 31-37.
[20] Amer, M., Goldstein, M. and Abdennadher, S. (2013) Enhancing One-Class Support Vector Machines for Unsupervised Anomaly Detection. Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description, ODD’13, ACM, New York, 2013, 8-15. http://dx.doi.org/10.1145/2500853.2500857