ABB  Vol.6 No.10 , October 2015
Structure of Ulvan Isolated from the Edible Green Seaweed, Ulva pertusa
ABSTRACT
Ulvan, rhamnan sulfate, was extracted from the edible green seaweed, Ana-aosa (Ulva pertusa), which is grown on the coast of the Okinawa Islands. The yield of ulvan was 8.5% (W/W), and the total carbohydrates, uronic acid and sulfuric acid and ash contents were 67.3%, 23.8%, 19.7% and 22.6%, respectively. L-Rhamnose, D-xylose and D-glucose residues were identified by liquid chromatography, and their molar ratio was 4.0:0.1:0.3. D-Glucuronic and L-idulonic acid residues were also identified in molar ratio of 1.0:0.2. The NMR (13C and 1H) and methylation analysis revealed terminal β-D-glucruonic acid, terminal α-L-idulonic acid, 1,3-linked α-L-rhamnose, 1,4-linked α-L-rhamnose, 1,2,4-linked α-L-rhamnose, 1,3,4-linked α-L-rhamnose, 1,2,3,4-linked α-L-rhamnose and 1,3,4-linked β-D-xylose. The sulfate groups were attached at the C-2 and C-3 positions of the 1,4-linked α-L-rhamnose as well as C-3 of the 1,4-linked β-D-xylose residues. The chemical structure of the ulvan from Ulva pertusa was determined.

Cite this paper
Tako, M. , Tamanaha, M. , Tamashiro, Y. and Uechi, S. (2015) Structure of Ulvan Isolated from the Edible Green Seaweed, Ulva pertusa. Advances in Bioscience and Biotechnology, 6, 645-655. doi: 10.4236/abb.2015.610068.
References
[1]   Tako, M. and Nakamura, S. (1986) Indicative Evidence for a Conformational Transition in κ-Carrageenan from Studies of Viscosity-Shear Rate Dependence. Carbohydrate Research, 155, 200-205.
http://dx.doi.org/10.1016/S0008-6215(00)90146-0

[2]   Tako, M. and Nakamura, S. (1986) Synergistic Interaction between κ-Carrageenan and Locust Bean Gum in Aqueous Media. Agricultural and Biological Chemistry, 50, 2817-2822.
http://dx.doi.org/10.1271/bbb1961.50.2817

[3]   Tako, M. Nakamura, S. and Kohda, Y. (1987) Indicative Evidence for a Conformational Transition in ι-Carrageenan. Carbohydrate Research, 161, 247-253.
http://dx.doi.org/10.1016/S0008-6215(00)90081-8

[4]   Tako, M. and Nakamura, S. (1988) Gelation Mechanism of Agarose. Carbohydrate Research, 180, 277-284.
http://dx.doi.org/10.1016/0008-6215(88)80084-3

[5]   Tako, M., Sakae, A. and Nakamura, S. (1989) Rheological Properties of Gellan Gum in Aqueous Media. Agricultural and Biological Chemistry, 53, 771-776.
http://dx.doi.org/10.1271/bbb1961.53.771

[6]   Tako, M., Teruya, T., Tamaki, Y. and Konishi, T. (2009) Molecular Origin for Rheological Characteristics of Native Gellan Gum. Colloid and Polymer Science, 287, 1445-1454.
http://dx.doi.org/10.1007/s00396-009-2112-2

[7]   Tako, M. (1993) Molecular Origin for Thermal Stability of Rhamsan Gum in Aqueous Media. Bioscience, Biotechnology and Biochemistry, 57, 1182-1184.
http://dx.doi.org/10.1271/bbb.57.1182

[8]   Tako, M., Tohma, S., Taira, T. and Ishihara, M. (2003) Gelation Mechanism of Deacetylated Rhamsan Gum. Carbohydrate Polymers, 54, 279-285.
http://dx.doi.org/10.1016/S0144-8617(03)00029-8

[9]   Tako, M. and Hizukuri, S. (1995) Evidence for Conformational Transition in Amylose. Journal of Carbohydrate Chemistry, 14, 613-622.
http://dx.doi.org/10.1080/07328309508005362

[10]   Tamaki, Y., Konishi, T. and Tako, M. (2011) Gelation and Retrogradation Mechanism of Wheat Amylose. Materials, 4, 1763-1775.
http://dx.doi.org/10.3390/ma4101763

[11]   Tako, M. and Hizukuri, S. (1997) Molecular Origin for the Thermal Stability of Rice Amylopectin. Journal of Carbohydrate Chemistry, 16, 655-666.
http://dx.doi.org/10.1080/07328309708007343

[12]   Tako, M. (1999) Molecular Origin for Thermal Stability of Waxy Rice Starch. Staerke/Starch,48, 414-417

[13]   Tako, M. and Hizukuri, S. (2000) Molecular Origin for Thermal Stability of Koshihikari Rice Amylopectin. Food Research International, 33, 35-40.
http://dx.doi.org/10.1016/S0963-9969(00)00021-1

[14]   Tako, M. and Hizukuri, S. (2003) Rheological Properties of Wheat (Halberd) Amylopectin. Staerke/Starch, 55, 345-349.
http://dx.doi.org/10.1002/star.200300138

[15]   Tako, M., Hanashiro, I. and Uechi, S. (2004) Rheological Properties of Wheat Amylopectin. Science of Bulletin of Faculty of Agriculture, University of the Ryukyus, No. 51, 139-143.

[16]   Tako, M. and Hizukuri, S. (1999) Gelatinization Mechanism of Rice Starch. Journal Carbohydrate Chemistry, 18, 573-584.
http://dx.doi.org/10.1080/07328309908544020

[17]   Tako, M. (2000) Gelatinization Characteristics of Rice Starch. Journal of Applied Glycoscience, 47, 187-192.
http://dx.doi.org/10.5458/jag.47.187

[18]   Tako, M. and Hizukuri, S. (2003) Gelatinization Mechanism of Potato Starch. Carbohydrate Polymers, 48, 397-401.
http://dx.doi.org/10.1016/S0144-8617(01)00287-9

[19]   Tako, M., Tamaki, Y., Konishi, T., Shibanuma, K., Hanashiro, I. and Takeda, Y. (2008) Gelatinization and Retrogradation Characteristics of Wheat (Rosella) Starch. Food Research International, 41, 797-802.
http://dx.doi.org/10.1016/j.foodres.2008.07.002

[20]   Tako, M., Tamaki, Y., Teruya, T., Konishi, T., Shibanuma, K., Hanashiro, I. and Takeda, Y. (2009) Gelatinization Characteristics of Halberd Wheat Starch. Staerke/Starch, 61, 275-281.
http://dx.doi.org/10.1002/star.200800073

[21]   Tako, M. (2000) Structural Principles of Polysaccharide Gels. Journal of Applied Glycoscience, 47, 49-53.
http://dx.doi.org/10.5458/jag.47.49

[22]   Tako, M., Tamaki, Y., Teruya, T. and Takeda, Y. (2014) The Principles of Starch Gelatinization and Retrogradation. Food and Nutrition Sciences, 5, 280-291.
http://dx.doi.org/10.4236/fns.2014.53035

[23]   Tako, M. (2015) The Principle of Polysaccharide Gels. Advances in Bioscience and Biotechnology, 6, 22-36.
http://dx.doi.org/10.4236/abb.2015.61004

[24]   Tako, M. (1994) Identification of Agar from Gracilaria blodgettii and Its Gelling Characteristics. Ohyo Tohshitsu, Kagaku, 41, 305-311.

[25]   Tako, M., Higa, M., Medoruma, K. and Nakasone, Y. (1999) A Highly Methylated Agar from Red Seaweed. Gracilaria arcuata, Botanica Marina, 42, 513-517.
http://dx.doi.org/10.1515/BOT.1999.058

[26]   Qi, X.Q., Tako, M. and Toyama, S. (1997) Chemical Characterization of κ-Carrageenan from Hypnea charoides. Journal of Applied Glycoscience, 44, 137-142.

[27]   Lin, L.H., Tako, M. and Hongo, F. (2000) Isolation and Characterization of ι-Carrageenan from Eucheuma serra, Journal of Applied Glycoscience, 47, 303-310.
http://dx.doi.org/10.5458/jag.47.303

[28]   Tako, M., Uehara, M., Kawashima, Y., Chinen, I. and Hongo, F. (1996) Isolation and Identification of Fucoidan from Cladosiphon okamuranus. Journal of Applied Glycoscience, 43, 143-148.

[29]   Tako, M., Nakada, T. and Hongo, F. (1999) Chemical Characterization of a Fucoidan from Commercially Cultured Nemacystus decipiens (Itomozuku). Bioscience, Biotechnology and Biochemistry, 53, 1813-1815.
http://dx.doi.org/10.1271/bbb.63.1813

[30]   Shiroma, R., Uechi, S., Taira, T., Ishihara, M., Tawata, S. and Tako, M. (2003). Isolation and Characterization of Fucoidan from Hijikia fusiformis. Journal of Applied Glycoscience, 50, 361-365.
http://dx.doi.org/10.5458/jag.50.361

[31]   Tako, M., Kiyuna, S. and Hongo, F. (2001) Isolation and Characterization of Alginate from Commercially Cultured Nemacystus decipiens. Bioscience, Biotechnology and Biochemistry, 63, 654-657.
http://dx.doi.org/10.1271/bbb.65.654

[32]   Tako, M., Yoza, E. and Tohma S. (2000) Chemical Characterization of Acetyl Fucoidan and Alginate from Commercially Cultured Cladosiphon okamuranus. Botanica Marina, 43, 393-398.
http://dx.doi.org/10.1515/BOT.2000.040

[33]   Pakdee, P., Kinjyo, K., Tako, M., Tamaki, Y., Tomita, Y. and Yaga, S. (1995) Water-Soluble Polysaccharide from Seeds of Trees I. Galactomannan from Seeds of Leucaena leucocephala de WIT. Mokuzai Gakkaishi, 41, 440-443.

[34]   Tamaki, Y., Teruya, T. and Tako, M. (2010) Chemical Structure of Galactomannan from Delonix regia. Bioscience, Biotechnology, and Biochemistry, 74, 1110-1112.
http://dx.doi.org/10.1271/bbb.90935

[35]   Tamaki, Y., Uechi, S., Taira, T., Ishihara, M., Adaniya, S., Uesato, K., Fukuta, M. and Tako, M. (2008) Isolation and Characterization of Pectin from Pericarp of Citrus depressa. Journal of Applied Glycoscience, 51, 19-25.
http://dx.doi.org/10.5458/jag.51.19

[36]   Tamaki, Y., Konishi, T., Fukuta, M. and Tako, M. (2008) Isolation and Structural Characterization of Pectin from Endocarp of Citrus depressa. Food Chemistry, 107, 352-364.
http://dx.doi.org/10.1016/j.foodchem.2007.08.027

[37]   Tamaki, Y. and Tako, M. (2008) Isolation and Characterization of Pectin from Peel of Citrus tankan. Bioscience, Biotechnology and Biochemistry, 72, 896-899.
http://dx.doi.org/10.1271/bbb.70706

[38]   Nakamura, M., Yamashiro, Y., Konishi, T., Hanashiro, I. and Tako, M. (2011). Structural Characteristics of Rhamnan Sulfate from Commercially Cultured Monostroma nitidum. Nippon Shokuhin Kagaku Kogaku Kaishi, 58, 245-251.

[39]   Tako M. (2002) The Acetyl Fucoidan and Its Manufacturing Methods from Commercially Cultured Cladosiphon okamuranus. Japanese Patent No. 3371124.

[40]   Teruya T., Konishi T., Uechi S., Tamaki, H. and Tako, M. (2007) Anti-Proliferative Activity of Over Sulfated Fucoidan from Commercially Cultured Cladisiphon okamuranus TOKIDA in U937 Cells. International Journal of Biological Macromolecules, 41, 221-226.
http://dx.doi.org/10.1016/j.ijbiomac.2007.02.010

[41]   Teruya, T., Tatemoto, H., Konishi, T. and Tako, M. (2009) Structural Characteristics and in Vitro Macrophage Activation of Acetyl Fucoidan from Cladosiphon okamuranus. Glycoconjugate Journal, 26, 1019-1018.
http://dx.doi.org/10.1007/s10719-008-9221-x

[42]   Lahaye, M. and Robic, A. (2003) Structural and Functional Properties of Ulvan, a Polysaccharide from Green Seaweeds. Biomacromolecules, 8, 1765-1774.
http://dx.doi.org/10.1021/bm061185q

[43]   Yu, P.Z., Zhang, Q.B., Li, N., Xu, Z.H., Wang, Y.M. and Li, Z.E. (2003) Polysaccharides from Ulva pertusa (Chlorophyta) and Preliminary Studies on Their Antihyperlipidemia Activity. Journal of Applied Phycology, 15, 21-27.
http://dx.doi.org/10.1023/A:1022997622334

[44]   Tabarsa, M., Jee, S.J. and You, S.G. (2012) Structural Analysis of Immunostimulating Sulfated Polysaccharides from Ulva pertusa. Carbohydrate Research, 361, 143-147.
http://dx.doi.org/10.1016/j.carres.2012.09.006

[45]   Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. (1956) Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28, 350-356.
http://dx.doi.org/10.1021/ac60111a017

[46]   Bitter, B. and Muir, H.M. (1962) A Modified Uronic Acid Carbazole Reaction. Analytical Biochemistry, 4, 330-334.
http://dx.doi.org/10.1016/0003-2697(62)90095-7

[47]   Ciucanu, J. and Kerek, F. (1984) A Simple and Rapid Method for the Permethylation of Carbohydrates. Carbohydrate Research, 131, 209-217.
http://dx.doi.org/10.1016/0008-6215(84)85242-8

[48]   Lahaye, M. and Ray, B. (1996) Cell-Wall Polysaccharides from the Marine Green Alga Ulva “Rigida” (Ulvales, Chlorophyta)-NMR Analysis of Ulvan Oligosaccharides. Carbohydrate Research, 283, 161-173.
http://dx.doi.org/10.1016/0008-6215(95)00407-6

[49]   Lahaye, M., Brunel, M. and, Bonnin, E. (1997) Fine Chemical Structure Analysis of Oligosaccharides Produced by an Ulvan-Lyase Degradation of the Water-Soluble Cell-Wall Polysaccharides from Ulva sp (Ulvales, Chlorophyta). Carbohydrate Research, 304, 325-333.
http://dx.doi.org/10.1016/S0008-6215(97)00270-X

[50]   Lahaye, M. (1998) NMR Spectroscopic Characterization of Oligosaccharides from Two Ulva rigida Ulvan Samples (Ulvales, Chlorophyta) Degraded by a Myase. Carbohydrate Research, 314, 1-12.
http://dx.doi.org/10.1016/S0008-6215(98)00293-6

[51]   Lahaye, M., Inizan, F. and Vigouroux, J. (1998) NMR Analysis of the Chemical Structure of Ulvan and of Ulvan- Boron Complex Formation. Carbohydrate Polymers, 36, 239-249.
http://dx.doi.org/10.1016/S0144-8617(98)00026-5

[52]   Lahaye, M., Cimadevilla, E.A.C., Kuhlenkamp, R., Quemener, B., Lognone, V. and Dion, P. (1999) Chemical Composition and 13C-NMR Spectroscopic Characterization of Ulvans from Ulva (Ulvales, Chlorophyta). Journal of Applied Phycology, 11, 1-7.
http://dx.doi.org/10.1023/A:1008063600071

[53]   Jansson, P.E., Kenne, L., Liedgren, H. and Lindberg, B. (1976) A Practical Guide to the Methylation Analysis of Carbohydrates. Chemistry Communication, Stockholm University, 8, 1-74

[54]   Sasaki, G.L., Gorin, P.A.J., Souza, L.M., Czelusniak, P.A. and Iakomini, M. (2003) Rapid Synthesis of Partially O-Methylated Alditol Acetate as Standards for GC-MS: Some Relative Activities of Hydroxyl Groups of Methyl Glucopyran. Carbohydrate Research, 340, 731-739.
http://dx.doi.org/10.1016/j.carres.2005.01.020

 
 
Top