JAMP  Vol.3 No.10 , October 2015
Structure of Schrödinger’s Nucleon: Elastic Form-Factors and Radii
ABSTRACT
The Galilei invariant model of the nucleon as a system of three point particles, whose dynamics is governed by Schrödinger equation, after six Hamiltonian parameters fitting, predicts magnetic momenta, masses and charge radii of the proton and neutron with experimental precision. Now this model is applied in order to investigate nucleon charge, mass and magnetism distributions. The obtained electric and magnetic form factors at low values of momentum transfer are in satisfactory agreement with experimental information. The model predicts that neutron is a more compact system than proton.

Cite this paper
Kamuntavičius, G. (2015) Structure of Schrödinger’s Nucleon: Elastic Form-Factors and Radii. Journal of Applied Mathematics and Physics, 3, 1352-1360. doi: 10.4236/jamp.2015.310162.
References
[1]   Strauch, S., et al. (2003) Polarization Transfer in the 4He(e,e’p)3H Reaction up to Q2 =2.6 (GeV/c)2. Physical Review Letters, 91, Article ID: 052301.
http://dx.doi.org/10.1103/PhysRevLett.91.052301

[2]   Close, F.E. and Roberts, R.G. (1988) A-Dependence of Shadowing and the Small-X EMC Data. Physics Letters, 213B, 91-94.
http://dx.doi.org/10.1016/0370-2693(88)91053-2

[3]   Ashman, J., et al. (European Muon Collaboration) (1988) Measurement of the Ratios of Deep Inelastic Muon-Nucleus Cross-Sections on Various Nuclei Compared to Deuterium. Physics Letters, 202B, 603-610.
http://dx.doi.org/10.1016/0370-2693(88)91872-2

[4]   Kamuntavicius, G.P. (2014) Nucleon as a Nonrelativistic Three Point Particles System. SOP Transactions on Theoretical Physics, 1, 44-56.
http://dx.doi.org/10.15764/TPHY.2014.04004

[5]   Olive, K.A., et al. (Particle Data Group) (2014) Review of Particle Physics. Chinese Physics, C38, Article ID: 090001.
http://dx.doi.org/10.1088/1674-1137/38/9/090001

[6]   Kamuntavicius, G.P. (2014) Galilei Invarint Technique for Quantum System Description. Journal of Mathematical Physics, 55, Article ID: 042103.
http://dx.doi.org/10.1063/1.4870617

[7]   Bateman, H. and Erdelyi, A. (1953) Higher Transcendental Functions, Vol. 1. McGraw-Hill, New York.

[8]   Abramowitz, M. and Stegun, I.A., Eds. (1964) Handbook of Mathematical Functions. NBS, New York.

[9]   Mohr, P.J., Taylor, B.N. and Newell, D.B. (2008) CODATA Recommended Values of the Fundamental Physical Constants: 2006. Reviews of Modern Physics, 80, 633-730.
http://dx.doi.org/10.1103/RevModPhys.80.633

[10]   Bernauer, J., et al. (2010) High-Precision Determination of the Electric and Magnetic Form Factors of the Proton. Physical Review Letters, 105, Article ID: 242001.
http://dx.doi.org/10.1103/physrevlett.105.242001

[11]   Pohl, R., Antognini, A., Nez, F., Amaro, F.D., Biraben, F., Cardoso, J.M.R., et al. (2010) The Size of the Proton. Nature, 466, 213-216.
http://dx.doi.org/10.1038/nature09250

[12]   Borisyuk, D. (2010) Proton Charge and Magnetic Rms Radii from the Elastic ep Scattering Data. Nuclear Physics A, 843, 59-67.
http://dx.doi.org/10.1016/j.nuclphysa.2010.05.054

[13]   Lorenz, I.T., Meissner, U.-G., Hammer, H.-W. and Dong, Y.B. (2015) Theoretical Constraints and Systematic Effects in the Determination of the Proton Form Factors. Physical Review D, 91, Article ID: 014023.
http://dx.doi.org/10.1103/PhysRevD.91.014023

[14]   Kopecky, S., Harvey, J.A., Hill, N.W., Krenn, M., Pernicka, M., Riehs, P. and Steiner, S. (1997) Neutron Charge Radius Determined from the Energy Dependence of the Neutron Transmission of Liquid 208Pb and 209Bi. Physical Review C, 56, 2229-2237.
http://dx.doi.org/10.1103/PhysRevC.56.2229

[15]   Aleksandrov, Y.A. (1999) The Sign and Value of the Neutron Mean Squared Intrinsic Charge Radius. Physics of Particles and Nuclei, 30, 29-48.
http://dx.doi.org/10.1134/1.953096

[16]   Venkat, S., Arrington, J., Miller, G.A. and Zhan, X. (2011) Realistic Transverse Images of the Proton Charge and Magnetization Densities. Physical Review C, 83, Article ID: 015203.
http://dx.doi.org/10.1103/PhysRevC.83.015203

[17]   Gentile, T.R. and Crawford, C.B. (2011) Neutron Charge Radius and the Neutron Electric form Factor. Physical Review C, 83, Article ID: 055203.
http://dx.doi.org/10.1103/PhysRevC.83.055203

[18]   Schlimme, B.S., Achenbach, P., Gayoso, C.A.A., Bernauer, J.C., Böhm, R., Bosnar, D., et al. (2013) Measurement of the Neutron Electric to Magnetic Form Factor Ratio at Q2=1.58 GeV2 Using the Reaction 3He(e,e’n)pp. Physical Review Letters, 111, Article ID: 132504.
http://dx.doi.org/10.1103/PhysRevLett.111.132504

[19]   Henley, E.M. and Garcia, A. (2007) Subatomic Physics. 3rd Edition, World Scientific, Hackensack, 158-174.
http://dx.doi.org/10.1142/6263

 
 
Top