JSEMAT  Vol.5 No.4 , October 2015
Metal Fluorides Produced Using Chlorine Trifluoride Gas
ABSTRACT
For developing coating materials, the fluorides of scandium, lanthanum, strontium, barium, magnesium and aluminum were produced from their oxides and chlorides by means of exposure to chlorine trifluoride gas at temperatures between room temperature and 700°C. The metal chlorides could be easily fluorinated even at room temperature, while the metal oxides required temperatures higher than 300?C. After the heating in ambient hydrogen at 1100°C, the fluorides of lanthanum and barium showed very low weight losses at 1100°C, although the weights of the other fluorides significantly decreased. These materials may work as protective films against corrosive and high temperature environments, particularly when using the chlorine trifluoride gas.

Cite this paper
Matsuda, H. , Habuka, H. , Ishida, Y. and Ohno, T. (2015) Metal Fluorides Produced Using Chlorine Trifluoride Gas. Journal of Surface Engineered Materials and Advanced Technology, 5, 228-236. doi: 10.4236/jsemat.2015.54024.
References
[1]   Creighton, J.R. and Ho, P. (2001) Introduction to Chemical Vapor Deposition, Chapter 1 in Chemical Vapor Deposition (#06682G).
http://www.asminternational.org/

[2]   Greenwood, N.N. and Earnshaw, A. (1997) Chemistry of the Elements. 2nd Edition, Butterworth-Heinemann, Oxford.

[3]   Habuka, H., Fukumoto, Y., Mizuno, K., Ishida, Y. and Ohno, T. (2014) Cleaning Process Applicable to Silicon Carbide Chemical Vapor Deposition Reactor. ECS Journal of Solid State Science and Technology, 3, N3006-N3009.

[4]   Mizuno, K., Habuka, H., Ishida, Y. and Ohno, T. (2015) In Situ Cleaning Process of Silicon Carbide Epitaxial Reactor. ECS Journal of Solid State Science and Technology, 4, 137-140.
http://dx.doi.org/10.1149/2.0091505jss

[5]   Miura, Y., Katsumi, Y., Oda, S., Habuka, H., Fukai, Y., Fukae, K., Kato, T., Okumura, H. and Arai, K. (2007) Determination of Etch Rate of 4H-Silicon Carbide Using Chlorine Trifluoride Gas. Japanese Journal of Applied Physics, 46, 7875-7879.
http://dx.doi.org/10.1143/JJAP.46.7875

[6]   Habuka, H., Katsumi, Y., Miura, Y., Tanaka, K., Fukai, Y., Fukae, T., Gao, Y., Kato, T., Okumura, H. and Arai, K. (2008) 4H Silicon Carbide Etching Using Chlorine Trifluoride Gas. Materials Science Forum, 600-603, 655-658.
http://dx.doi.org/10.4028/www.scientific.net/MSF.600-603.655

[7]   Miura, Y., Katsumi, Y., Tanaka, K., Oda, S., Habuka, H., Gao, Y., Fukai, Y., Fukae, K., Kato, T., Okumura, H. and Arai, K. (2008) Etching Rate Behavior of 4H-Silicon Carbide Using Chlorine Trifluoride Gas. ECS Transactions, 13, 39-52.
http://dx.doi.org/10.1149/1.2913079

[8]   Habuka, H., Tanaka, K., Katsumi, Y., Takechi, N., Fukae, K. and Kato, T. (2009) 4H-Silicon Carbide Surface Morphology Etched Using Chlorine Trifluoride Gas. Journal of the Electrochemical Society, 156, H971-H975.
http://dx.doi.org/10.1149/1.3243878

[9]   Habuka, H., Tanaka, K., Katsumi, Y., Takechi, N., Fukae, K. and Kato, T. (2010) 4H-SiC Surface Morphology Etched Using ClF3 Gas. Material Science Forum, 645-648, 787-790.
http://dx.doi.org/10.4028/www.scientific.net/MSF.645-648.787

[10]   Habuka, H., Furukawa, K., Kanai, T. and Kato, T. (2012) Density of Etch Pits on C-Face 4H-SiC Surface Produced by ClF3 Gas. Material Science Forum, 725, 49-52.
http://dx.doi.org/10.4028/www.scientific.net/MSF.725.49

[11]   Habuka, H., Furukawa, K., Kanai, T. and Kato, T. (2012) Density and Behavior of Etch Pits on C-Face 4H-SiC Surface Produced by ClF3 Gas. Material Science Forum, 717-720, 379-382.
http://dx.doi.org/10.4028/www.scientific.net/MSF.717-720.379

[12]   Habuka, H., Koda, H., Saito, D., Suzuki, T., Nakamura, A., Takeuchi, T. and Aihara, M. (2003) High Performance Silicon Etching Using Chlorine Trifluoride Gas. Journal of the Electrochemical Society, 150, G461-G464.
http://dx.doi.org/10.1149/1.1587728

[13]   Habuka, H., Sukenobu, T., Koda, H., Takeuchi, T. and Aihara, M. (2004) Silicon Etch Rate Using Chlorine Trifluoride. Journal of the Electrochemical Society, 151, G783-G787.
http://dx.doi.org/10.1149/1.1806391

[14]   Habuka, H., Otsuka, T. and Qu, W.F. (1999) Dominant Overall Chemical Reaction in a Chlorine Trifluoride-Silicon- Nitrogen System at Atmospheric Pressure. Japanese Journal of Applied Physics, 38, 6466-6469.
http://dx.doi.org/10.1143/JJAP.38.6466

[15]   Haynes, W.M. (2012) CRC Handbook of Chemistry and Physics. 92nd Edition, CRC Press, Boca Raton.

[16]   Rinehart, G.H. and Behrens, R.G. (1980) Vapor Pressure and Vaporization Thermodynamics of Scandium Trifluoride. Journal of the Less Common Metals, 75, 65-78.
http://dx.doi.org/10.1016/0022-5088(80)90369-0

[17]   Melnikova, P. and Komissarova, L.N. (2006) New Form of Scandium Fluoride. Journal of Physics and Chemistry of Solids, 67, 1899-1900.
http://dx.doi.org/10.1016/j.jpcs.2006.03.006

[18]   http://pubchem.ncbi.nlm.nih.gov/compound/aluminum_fluoride#section=Top

 
 
Top