JAMP  Vol.3 No.10 , October 2015
Distribution of Microcrystalline Quartz in Glassy Fulgurites from Garuamukh and Kimin, India
Abstract
The presence of microcrystalline quartz particles in fulgurites of Garuamukh and Kimin has been investigated. The compositional and structural studies were carried out at room temperature by using X-ray fluorescence (XRF), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopic techniques. The compositional result shows the major constituent of the fulgurites to be SiO2 with miniature quantities of oxides of Al, Ti, Fe, Ca, and Na. The X-ray diffraction quantified the mixtures of identical amorphous and micro-crystalline phases in the fulgurites samples. Systemetatic investigations of microcrystalline quartz particles have been carried out in midinfrared region of 500 - 1000 cm-1 based on the assignment of infrared bands of the structural group SiO4 tetrahedra. In infrared Si-O-Si bending vibration region of quartz, the octahedral characteristic peak is explored in the fulgurites samples with the variation of the particle sizes which is indicative to the presence of microcrystalline quartz. The distribution of the microcrystalline quartz is ascertained by calculating the extinction coefficient. The present study has significant implications in understanding the thermodynamic properties of naturally occurring glasses, which are formed by shock metamorphism.

Cite this paper
Saikia, B. , Parthasarathy, G. and Borah, R. (2015) Distribution of Microcrystalline Quartz in Glassy Fulgurites from Garuamukh and Kimin, India. Journal of Applied Mathematics and Physics, 3, 1343-1351. doi: 10.4236/jamp.2015.310161.
References

[1]   Krider, E.P. and Dawson, G.A. (1968) Peak Power and Energy Dissipation in a Single-Stroke Lightning Flash. Journal of Geophysical Research, 73, 3335-3339.
http://dx.doi.org/10.1029/JB073i010p03335

[2]   Uman, M.A. (1964) The Peak Temperature of Lightning. Journal of Atmospheric and Terrestrial Physics, 26, 123-128.
http://dx.doi.org/10.1016/0021-9169(64)90113-8

[3]   Pye, K. (1982) Journal of Sediment Research, 52, 991-998.

[4]   Essene, E.J. and Fisher, D.C. (1986) Lightning Strike Fusion: Extreme Reduction and Metal-Silicate Liquid Immiscibility. Science, 234, 189-193.
http://dx.doi.org/10.1126/science.234.4773.189

[5]   Crespo, T.M., Lozano Fernandez, R.P. and Gonzalez Laguna, R. (2009) The Fulgurite of Torre de Moncorvo (Portugal): Description and Analysis of the Glass. European Journal of Mineralogy, 21, 783-794.
http://dx.doi.org/10.1127/0935-1221/2009/0021-1948

[6]   Jones, B.E., Jones, K.S., Rambo, K.J., Rakov, V.A., Jerald, J. and Uman, M.A. (2005) Oxide Reduction during Triggered-Lightning Fulgurite Formation. Journal of Atmospheric and Solar-Terrestrial Physics, 67, 423-428.
http://dx.doi.org/10.1016/j.jastp.2004.11.005

[7]   Navarro-Gonzalez, R., Mahan, S.A., Singhvi, A.K., Navarro-Aceves, R., Rajot, J.L., McKay, C.P., Coll, P. and Raulin, F. (2007) Paleoecology Reconstruction from Trapped Gases in a Fulgurite from the Late Pleistocene of the Libyan Desert. Geology, 35, 171-174.
http://dx.doi.org/10.1130/G23246A.1

[8]   Schiano, P., Clocchiatti, R., Shimizu, N., Maury, R.C., Jochum, K.P. and Hofmann, A.W. (1995) Hydrous, Silica-Rich Melts in the Sub-Arc Mantle and Their Relationship with Erupted Arc Lavas. Nature, 377, 595-600.
http://dx.doi.org/10.1038/377595a0

[9]   Bice, D.M., Newton, C.R., McCauley, S., Reiners, P.W. and McRoberts, C.A. (1992) Shocked Quartz at the Triassic-Jurassic Boundary in Italy. Science, 255, 443-446.
http://dx.doi.org/10.1126/science.255.5043.443

[10]   Haines, P.W. Jenkins, R.J.F. and Kelley, S.P. (2001) Pleistocene Glass in the Australian Desert: The Case for an Impact Origin. Geology, 29, 899-902.
http://dx.doi.org/10.1130/0091-7613(2001)029<0899:PGITAD>2.0.CO;2

[11]   Schultz, P.H., Zarate, M., Hames, W., Camilion, C. and King, J. (1998) A 3.3-Ma Impact in Argentina and Possible Consequences. Science, 282, 2061-2063.
http://dx.doi.org/10.1126/science.282.5396.2061

[12]   Stoffler, D. (1971) Coesite and Stishovite in Shocked Crystalline Rocks. Journal of Geophysical Research, 76, 5474-5488.
http://dx.doi.org/10.1029/JB076i023p05474

[13]   Stoffler, D. and Langenhorst, F. (1994) Shock Metamorphism of Quartz in Nature and Experiment: I. Basic Observation and Theory. Meteoritics, 29, 155-181.
http://dx.doi.org/10.1111/j.1945-5100.1994.tb00670.x

[14]   Grieve, R.A.F., Langenhorst, F. and Stoffler, D. (1996) Shock Metamorphism of Quartz in Nature and Experiment: II. Significance in Geosciences. Meteoritics and Planetary Science, 31, 6-35.
http://dx.doi.org/10.1111/j.1945-5100.1996.tb02049.x

[15]   Huffman, A.R. and Reimold, W.U. (1996) Experimental Constraints on Shock-Induced Microstructures in Naturally Deformed Silicates. Tectonophysics, 256, 165-217.
http://dx.doi.org/10.1016/0040-1951(95)00162-X

[16]   Stahle, V., Altherr, R., Koch, M. and Nasdala, L. (2008) Shock-Induced Growth and Metastability of Stishovite and Coesite in Lithic Clasts from Suevite of the Ries Impact Crater (Germany). Contributions to Mineralogy and Petrology, 155, 457-472.
http://dx.doi.org/10.1007/s00410-007-0252-2

[17]   Saikia, B.J., Parthasarathy, G., Sarmah, N.C. and Baruah, G.D. (2007) Geochimica et Cosmochimica Acta, 71, 866.

[18]   Saikia, B.J., Parthasarathy, G., Sarmah, N.C. and Baruah, G.D. (2008) Fourier-Transform Infrared Spectroscopic Characterization of Naturally Occurring Glassy Fulgurites. Bulletin of Materials Science, 31, 155-158.
http://dx.doi.org/10.1007/s12034-008-0027-z

[19]   Saikia, B.J. and Sarmah, N.C. (2009) Geochimica et Cosmochimica Acta, 73, 1144.

[20]   Saikia, B.J., Parthasarathy, G. and Sarmah, N.C. (2008) Fourier Transform Infrared Spectroscopic Estimation of Crystallinity in SiO2 Based Rocks. Bulletin of Materials Science, 31, 775-779.
http://dx.doi.org/10.1007/s12034-008-0123-0

[21]   IS 1607 (2013) Indian Standard Methods of Test Sieving. Second Revision, Bureau of Indian Standards, New Delhi.

[22]   Frondel, C. (1962) Dana’s System of Mineralogy: Fulgurite. In: Encyclopaedia Britannica, John Wiley and Sons, New York, 321.

[23]   Saikia, B.J. (2014) Spectroscopic Estimation of Geometrical Structure Elucidation in Natural SiO2 Crystal. Journal of Materials Physics Chemistry, 2, 28-33.
http://dx.doi.org/10.12691/jmpc-2-2-3

[24]   Ojima, J. (2003) Determining of Crystalline Silica in Respirable Dust Samples by Infrared Spectrophotometry in the Presence of Interferences. Journal of Occupational Health, 45, 94-103.
http://dx.doi.org/10.1539/joh.45.94

[25]   Parthasarathy, G. (2002) Effect of High-Pressures on the Electrical Resistivity of Natural Zeolites from Deccan Trap, Maharashtra, India. Journal of Applied Geophysics, 58, 321-329.
http://dx.doi.org/10.1016/j.jappgeo.2005.05.008

[26]   Schneider, H. (1974) Shock-Induced Thermal Transformations of Ries-Biotites. Contributions to Mineralogy and Petrology, 43, 233-243.
http://dx.doi.org/10.1007/BF01134839

[27]   Hlavay, J., Jonas, S., Elek, S. and Inczedy, J. (1978) Characterization of the Particle Size and the Crystallinity of Certain Minerals by IR Spectrophotometry and Other Instrumental Methods—II. Investigations on Quartz and Feldspar. Clays and Clay Minerals, 26, 139-143.
http://dx.doi.org/10.1346/CCMN.1978.0260209

[28]   Parthasarathy, G., Choudary, B.M., Sreedhar, B. and Kunwar, A.C. (2007) Environmental Mineralogy: Spectroscopic Studies on Ferrous Saponite and the Reduction of Hexavalent Chromium. Natural Hazards, 40, 647-655.
http://dx.doi.org/10.1007/s11069-006-9015-z

[29]   Beall, G.H. (1992) Design and Properties of Glass-Ceramics. Annual Review of Materials Science, 22, 91-119.
http://dx.doi.org/10.1146/annurev.ms.22.080192.000515

[30]   Murata, K.J. and Norman, M.B. (1976) An Index of Crystallinity for Quartz. American Journal of Science, 276, 1120-1130.
http://dx.doi.org/10.2475/ajs.276.9.1120

[31]   Gucsik, A., Zhang, M., Koeberl, C., Salje, E.K.H., Redfern, S.A.T. and Pruneda, J.M. (2004) Infrared and Raman Spectra of ZrSiO4 Experimentally Shocked at High Pressures. Mineralogical Magazine, 65, 801-811.
http://dx.doi.org/10.1180/0026461046850220

 
 
Top