[1] Gröchenig, K. and Stöckler, J. (2013) Gabor Frames and Totally Positive Functions. Duke Mathematical Journal, 162, 1003-1031.
http://dx.doi.org/10.1215/00127094-2141944
[2] De Mari, F. and Nowak, K. (2001) Analysis of the Affine Transformations of the Time-Frequency Plane. Bulletin of the Australian Mathematical Society, 63, 195-218.
http://dx.doi.org/10.1017/S0004972700019274
[3] Daubechies, I. (1992) Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series, No. 6, SIAM, Philadelphia.
[4] Landau, H.J. and Widom, H. (1980) Eigenvalue Distribution of Time and Frequency Limiting. Journal of Mathematical Analysis and Applications, 77, 469-481.
http://dx.doi.org/10.1016/0022-247X(80)90241-3
[5] Landau, H.J. (1993) On the Density of Phase-Space Expansions. IEEE Transactions on Information Theory, 39, 1152-1156.
http://dx.doi.org/10.1109/18.243434
[6] Maz’ya, V.G. and Shaposhnikova, T.O. (2011) Sobolev Spaces: With Applications to Elliptic Partial Differential Equations (Grundlehren der Mathematischen Wissenschaften 342). Springer, Berlin.
[7] Folland, G. (1989) Harmonic Analysis in Phase Space. Princeton University Press, Princeton.
[8] Zhu, K. (2012) Analysis on Fock Spaces. Graduate Texts in Mathematics, Volume 263, Springer, New York.
[9] Feichtinger, H.G. and Nowak, K. (2001) A Szegö-Type Theorem for Gabor-Toeplitz Localization Operators. The Michigan Mathematical Journal, 49, 13-21.
http://dx.doi.org/10.1307/mmj/1008719032
[10] De Mari, F., Feichtinger, H.G. and Nowak, K. (2002) Uniform Eigenvalue Estimates for Time-Frequency Localization Operators. Journal of the London Mathematical Society, 65, 720-732.
http://dx.doi.org/10.1112/S0024610702003101
[11] Nowak, K. Optimal Localization Domains for Gabor-Toeplitz Operators. Unpublished Manuscript.
[12] Dörfler, M. and Gröchenig, K. (2011) Time-Frequency Partitions and Characterizations of Modulation Spaces with Localization Operators. Journal of Functional Analysis, 260, 1903-1924.
http://dx.doi.org/10.1016/j.jfa.2010.12.021
[13] Gröchenig, K.-H. and Toft, J. (2011) Isomorphism Properties of Toeplitz Operators in Time-Frequency Analysis. Journal d’Analyse Mathematique, 114, 255-283.
[14] Gröchenig, K. and Toft, J. (2013) The Range of Localization Operators and Lifting Theorems for Modulation and Bargmann-Fock Spaces. Transactions of the American Mathematical Society, 365, 4475-4496.
http://dx.doi.org/10.1090/S0002-9947-2013-05836-9
[15] Döpfner, K.A. (2012) Quality of Gabor Multipliers for Approximation of Hilbert-Schmidt Operators. Master’s Thesis, Department of Mathematics, University of Vienna, Vienna.
[16] Gröchenig, K. (2011) Representation and Approximation of Pseudodifferential Operators by Sums of Gabor Multipliers. Applicable Analysis, 90, 385-401.
http://dx.doi.org/10.1080/00036811.2010.499507
[17] Dörfler, M. and Torrésani, B. (2010) Representations of Operators in the Time-Frequency Domain and Generalized Gabor Multipliers. Journal of Fourier Analysis and Applications, 16, 261-293.
http://dx.doi.org/10.1007/s00041-009-9085-x
[18] Cordero, E., Nicola, F. and Rodino, L. (2010) Time-Frequency Analysis of Fourier Integral Operators. Communications on Pure and Applied Analysis, 9, 1-21.
[19] Cordero, E., Gröchenig, K. and Nicola, F. (2012) Approximation of Fourier Integral Operators by Gabor Multipliers. Journal of Fourier Analysis and Applications, 18, 661-684.
http://dx.doi.org/10.1007/s00041-011-9214-1
[20] Feichtinger, H.G., Nowak, K. and Pap, M. (2014) Spectral Properties of Toeplitz Operators Acting on Gabor Type Reproducing Kernel Hilbert Spaces. In: Rassias, T.M. and Pardalos, P.M., Eds., Mathematics without Boundaries: Surveys in Pure Mathematics, Springer, New York, 163-180.
[21] Nowak, K. (1996) Local Toeplitz Operators Based on Wavelets: Phase Space Patterns for Rough Wavelets. Studia Mathematica, 119, 37-64.
[22] Feichtinger, H.G. and Nowak, K. (2003) A First Survey of Gabor Multipliers. In: Fiechtinger, H.G. and Strohmer, T., Eds., Advances in Gabor Analysis, Birkhäuser, Boston, 99-128.
[23] Martinet, J. (2003) Perfect Lattices in Euclidean Spaces (Grundlehren der mathematischen Wissenschaften, Volume 327). Springer, Berlin.
http://dx.doi.org/10.1007/978-3-662-05167-2
[24] Stein, E.M. (1993) Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton.
[25] Nowak, W.G. (2004) Lattice Points in a Circle: An Improved Mean-Square Asymptotics. Acta Arithmetica, 113, 259-272.
http://dx.doi.org/10.4064/aa113-3-4
[26] Christensen, O. (2003) An Introduction to Frames and Riesz Bases. Birkhäuser, Boston.
http://dx.doi.org/10.1007/978-0-8176-8224-8
[27] Flandrin, P. (1999) Time-Frequency/Time-Scale Analysis. Academic Press, San Diego.
[28] Gröchenig, K. (2001) Foundations of Time-Frequency Analysis. Birkhäuser, Boston.
[29] Wojtaszczyk, P. (1997) A Mathematical Introduction to Wavelets. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511623790
[30] Feichtinger, H.G. and Strohmer, T. (1998) Gabor Analysis and Algorithms. Theory and Applications. Birkhäuser, Boston.
[31] Feichtinger, H.G. and Strohmer, T. (2003) Advances in Gabor Analysis. Birkhäuser, Boston.
[32] Balan, R. (2008) The Noncommutative Wiener Lemma, Linear Independence, and Spectral Properties of the Algebra of Time-Frequency Shift Operators. Transactions of the American Mathematical Society, 360, 3921-3941.
http://dx.doi.org/10.1090/S0002-9947-08-04448-6
[33] Casazza, P.G. (2000) The Art of Frame Theory. Taiwanese Journal of Mathematics, 4, 129-201.
[34] Heil, C. (2007) History and Evolution of the Density Theorem for Gabor Frames. Journal of Fourier Analysis and Applications, 13, 113-166.
http://dx.doi.org/10.1007/s00041-006-6073-2
[35] Gröchenig, K. and Leinert, M. (2003) Wiener’s Lemma for Twisted Convolution and Gabor Frames. Journal of the American Mathematical Society, 17, 1-18.
[36] Luef, F. Private Communication.
[37] Feichtinger, H.G. and Kaiblinger, N. (2003) Varying the Time-Frequency Lattice of Gabor Frames. Transactions of the American Mathematical Society, 356, 2001-2023.
[38] Lang, S. (1998) SL2(R), Graduate Texts in Mathematics. Volume 105, Springer, New York.
[39] Katznelson, Y. (1976) An Introduction to Harmonic Analysis. Dover Publications, New York.