Back
 JAMP  Vol.3 No.10 , October 2015
A Numerical Method for Shape Optimal Design in the Oseen Flow with Heat Transfer
Abstract: This paper is concerned with the optimal design of an obstacle located in the viscous and incompressible fluid which is driven by the steady-state Oseen equations with thermal effects. The structure of shape gradient of the cost functional is derived by applying the differentiability of a minimax formulation involving a Lagrange functional with a space parametrization technique. A gradient type algorithm is employed to the shape optimization problem. Numerical examples indicate that our theory is useful for practical purpose and the proposed algorithm is feasible.
Cite this paper: Yan, W. , Wang, A. and Guan, G. (2015) A Numerical Method for Shape Optimal Design in the Oseen Flow with Heat Transfer. Journal of Applied Mathematics and Physics, 3, 1295-1307. doi: 10.4236/jamp.2015.310158.
References

[1]   Pironneau, O. (1984) Optimal Shape Design for Elliptic Systems. Springer, Berlin.
http://dx.doi.org/10.1007/978-3-642-87722-3

[2]   Mohammadi, B. and Pironneau, O. (2001) Applied Shape Optimization for Fluids. Clardendon Press, Oxford.

[3]   Simon, J. (1990) Domain Variation for Drag in Stokes Flow. Proceedings of IFIP Conference in Shanghai, Lecture Notes in Control and Information Science, Springer, New York, 1990.

[4]   Bello, J., Fernndez-Cara, E. and Simon, J. (1992) The Variation of the Drag with Respect to the Domain in Navier-Stokes Flow. Optimization, Optimal Control, Partial Differential Equations, International Series of Numerical Mathematics, 107, 287-296.
http://dx.doi.org/10.1007/978-3-0348-8625-3_26

[5]   Bello, J., Fernndez-Cara, E., Lemoine, J. and Simon, J. (1997) The Differentiability of the Drag with Respect to the Variations of a Lipschitz Domain in a Navier-Stokes Flow. SIAM Journal on Control and Optimization, 35, 626-640.
http://dx.doi.org/10.1137/S0363012994278213

[6]   Delfour, M.C. and Zolésio, J.-P. (2001) Shapes and Geometries: Analysis, Differential Calculus, and Optimization. SIAM, Philadelphia.

[7]   Sokolowski, J. and Zolésio, J.-P. (1992) Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-3-642-58106-9

[8]   Yan, W.J. and Ma, Y.C. (2008) Shape Reconstruction of an Inverse Stokes Problem. Journal of Computational and Applied Mathematics, 216, 554-562.
http://dx.doi.org/10.1016/j.cam.2007.06.006

[9]   Yan, W.J. and Ma, Y.C. (2009) The Application of Domain Derivative of Thenonhomogeneous Navier-Stokes Equations in Shape Reconstruction. Computers and Fluids, 38, 1101-1107.
http://dx.doi.org/10.1016/j.compfluid.2008.11.003

[10]   Yan, W.J., He, Y.L. and Ma, Y.C. (2012) A Numerical Method for the Viscous Incompressible Oseen Flow in Shape Reconstruction. Applied Mathematical Modelling, 36, 301-309.
http://dx.doi.org/10.1016/j.apm.2011.05.058

[11]   Chenais, D., Monnier, J. and Vila, J.P. (2001) A Shape Optimal Design Problem with Convective Radiative Thermal transfer. Journal of Optimazation Theory and Applications, 110, 75-117.
http://dx.doi.org/10.1023/A:1017543529204

[12]   Pironneau, O. (1988) Optimal Shape Design by Local Boundary Variations. Springer-Verlag, Berlin.

[13]   Hadamard, J. (1907) Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées. Mémoire des savants étrangers, 33, 515-629.

[14]   Simon, J. (1980) Differentiation with Respect to the Domain in Boundary Value Problems. Numerical Functional Analysis and Optimization, 2, 649-687.
http://dx.doi.org/10.1080/01630563.1980.10120631

[15]   Dogan, G., Morin, P., Nochetto, R.H. and Verani, M. (2007) Discrete Gradient Flows for Shape Optimization and Applications. Computer Methods in Applied Mechanics and Engineering, 196, 3898-3914.
http://dx.doi.org/10.1016/j.cma.2006.10.046

[16]   Temam, R. (2001) Navier Stokes Equations, Theory and Numerical Analysis. AMS Chelsea, Rhode Island.

 
 
Top