MSCE  Vol.3 No.10 , October 2015
Doping Graphene by Chemical Treatments Using Acid and Basic Substances
Abstract: We prepared single-layer graphene films through mechanical exfoliation of Kish graphite and chemical vapor deposition techniques. These samples were treated in nitric acid, sulfuric acid, sodium hydroxide and ammonium hydroxide solutions to induce doping. We used Micro Raman Spectroscopy before and after the chemical functionalization to monitor differences in the Raman spectrum. We found shifting for both G and 2D peaks of graphene and a significant upshifting in samples treated with sulfuric acid, similar to those reported for nitric acid.
Cite this paper: Bautista-Flores, C. , Sato-Berrú, R. and Mendoza, D. (2015) Doping Graphene by Chemical Treatments Using Acid and Basic Substances. Journal of Materials Science and Chemical Engineering, 3, 17-21. doi: 10.4236/msce.2015.310003.

[1]   Novoselov, K. (2007) Graphene: Mind the Gap. Nature Materials, 6, 720-721.

[2]   Zhou, S.Y., Gweon, G.H., Fedorov, A.V., First, P.N., de Heer, W.A., Lee, D.H., Guinea, F., Castro Neto, A.H. and Lanzara, A. (2007) Substrate-Induced Bandgap Opening in Epitaxial Graphene. Nature Materials, 6, 770-775.

[3]   Panchakarla, L.S., Subrahmanyam, K.S., Saha, S.K., Govindaraj, A., Krishnamurthy, H.R., Waghmare, U.V. and Rao, C.N.R. (2009) Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene. Advanced Materials, 21, 4726-4730.

[4]   Das, A., Pisana, S., Chakraborty, B., Piscanec, S., Saha, S.K., Waghmare, U.V., Novoselov, K.S., Krishnamurthy, H.R., Geim, A.K., Ferrari, A.C. and Sood, A.K. (2008) Monitoring Dopants by Raman Scattering in an Electrochemcally Top-Gated Graphene Transistor. Nature Nanotechnology, 3, 210-215.

[5]   Su, Q., Pang, S., Li, C., Feng, X. and Müllen, K. (2009) Composites of Graphene with Large Aromatic Molecules. Advanced Materials, 21, 3191-3195.

[6]   Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.J., Kim, K.S., Ozyilmaz, B., Ahn, J.H., Hong, B.H. and Lijima, S. (2010) Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes. Nature Nanotechnology, 5, 574-578.

[7]   Wang, X., Li, X., Zhang, L., Yoo, Y., Weber, P.K., Wang, H., Guo, J. and Dai, H. (2009) N-Doping of Graphene through Electrothermal Reactions with Ammonia. Science, 324, 768-771.

[8]   Bautista-Flores, C., Sato-Berrú, R.Y. and Mendoza, D. (2014) Charge Transfer in the Fullerene C60-Few Layer Graphene System and the Existence of Negative Photoconductivity. Applied Physics Letters, 105, 191116.

[9]   Barzola-Quiquia, J., Böhlmann, W., Esquinazi, P., Schadewitz, A., Ballestar, A., Dusari, S., Schultze-Nobre, L. and Kersting, B. (2011) Enhancement of the Ferromagnetic Order of Graphite after Sulphuric Acid Treatment. Applied Physics Letters, 98, 192511.

[10]   Eckmann, A., Felter, A., Mishchenko, A., Britnell, L., Krupke, R., Novoselov, K.S. and Casiraghi, C. (2012) Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Letters, 12, 3925-3930.

[11]   Casiraghi, C. (2009) Probing Disorder and Charged Impurities in Graphene by Raman Spectroscopy. Physica Status Solidi (RRL)—Rapid Research Letters, 3, 175-177.

[12]   Rao, C.N., Sood, A.K., Subrahmanyam, K.S. and Govindaraj, A. (2009) Graphene: The New Two-Dimensional Nanomaterial. Angewandte Chemie International Edition, 48, 7752-7777.

[13]   Liu, H., Liu, Y. and Zhu, D. (2011) Chemical Doping of Graphene. Journal of Materials Chemistry, 21, 3335-3345.

[14]   Dong, X., Fu, D., Fang, W., Shi, Y., Chen, P. and Li, L.J. (2009) Doping Single-Layer Graphene with Aromatic Molecules. Small, 5, 1422-1426.

[15]   Chen, C.F., Park, C.H., Boudouris, B.W., Horng, J., Geng, B., Girit, C., Zettl, A., Crommie, M.F., Segalman, R.A., Loui, S.G. and Wang, F. (2011) Controlling Inelastic Light Scattering Quantum Pathways in Graphene. Nature, 471, 617-620.

[16]   Yan, J., Zhang, Y., Kim, P. and Pinczuk, A. (2007) Electric Field Effect Tuning of Electron-Phonon Coupling in Gra-phene. Physical Review Letters, 98, Article ID: 166802.

[17]   Jnawali, G., Rao, Y., Beck, J.H., Petrone, N., Kymissis, I., Hone, J. and Heinz, T.F. (2015) Observation of Ground- and Excited-State Charge Transfer at the C60/Graphene Interface. ACS Nano, 9, 7175-7185.

[18]   Horng, J., Chen, C.F., Geng, B., Girit, C., Zhang, Y., Hao, Z., Bechtel, H.A., Martin, M., Zettl, A., Crommie, M.F., Sheng, Y.R. and Wang, F. (2011) Drude Conductivity of Dirac Fermions in Graphene. Physical Review B, 83, 165113.

[19]   Youngkun, A., Hyein, K., Young-Hwan, K., Yeonjin, Y. and Seong-II, K. (2013) Procedure of Removing Polymer Residues and Its Influences on Electronic and Structural Characteristics of Graphene. Applied Physics Letters, 102, 091602.

[20]   Woo, S.O. and Teizer, W. (2013) The Effect of Electron Induced Hydrogenation of Graphene on Its Electrical Transport Properties. Applied Physics Letters, 103, 041603.