MSCE  Vol.3 No.10 , October 2015
Effect of Pyrolysis Temperature on the Electrical Behavior of Polymer-Derived SiOCN Ceramic
ABSTRACT
The conductivity of polymer-derived SiOCN ceramics exhibited an Arrhenius dependence on pyrolysis temperature, with the activation energy of ~3.95 eV. The formation and structure change of the free carbon phase were detected by means of electron spin resonance spectroscopy and X-ray photoelectron spectroscopy. It reveals that the number of dangling bonds on the free carbon is increased as pyrolysis temperature increases, with the activation energy of ~3.87 eV. So it is demonstrated that the pyrolysis-temperature induced increase in the conductivity is mainly attributed to the increase of dangling on the graphite-like carbon.

Cite this paper
Li, Y. , Yu, Y. , San, H. , Han, Q. and An, L. (2015) Effect of Pyrolysis Temperature on the Electrical Behavior of Polymer-Derived SiOCN Ceramic. Journal of Materials Science and Chemical Engineering, 3, 9-16. doi: 10.4236/msce.2015.310002.
References
[1]   Riedel, R., Passing, G., Schönfelde, H. and Brook, R.J. (1992) Synthesis of Dense Silicon-Based Ceramics at Low Temperatures. Nature, 355, 714-717.
http://dx.doi.org/10.1038/355714a0

[2]   Riedel, R., Kienzle, A., Dressler, W., Ruwisch, L., Bill, J. and Aldinger, F. (1996) A Silicoboron Carbonitride Ceramic Stable to 2,000 Degrees C. Nature, 382, 796-798.
http://dx.doi.org/10.1038/382796a0

[3]   Wang, Y., Fan, Y., Zhang, L., Zhang, W. and An, L. (2006) Polymer-Derived SiAlCN Ceramics Resist Oxidation at 1400 Degrees C. Scripta Materialia, 55, 295-297.
http://dx.doi.org/10.1016/j.scriptamat.2006.05.004

[4]   An, L., Wang, Y. and Bharadwai, L. (2004) Silicoaluminum Carbonitride with Anomalously High Resistance to Oxi-dation and Hot Corrosion. Advanced Engineering Materials, 6, 337-340.
http://dx.doi.org/10.1002/adem.200400010

[5]   Wang, Y., Fei, W. and An, L. (2006) Oxidation/Corrosion of Polymer-Derived SiAlCN Ceramics in Water Vapor. Journal of the American Ceramic Society, 89, 1079-1082.
http://dx.doi.org/10.1111/j.1551-2916.2005.00791.x

[6]   Riedel, R., Ruswisch, L.M., An, L. and Raj, R. (1998) Amorphous Silicoboron Carbonitride Ceramic with Very High Viscosity at Temperatures above 1500℃. Journal of the American Ceramic Society, 81, 3341-3344.
http://dx.doi.org/10.1111/j.1151-2916.1998.tb02780.x

[7]   An, L., Riedel, R., Konetachny, C., Kleebe, H.J. and Raj, R. (1998) Newtonian Viscosity of Amorphous Silicon Carbonitride at High Temperature. Journal of the American Ceramic Society, 81, 1349-1352.
http://dx.doi.org/10.1111/j.1151-2916.1998.tb02489.x

[8]   Wang, Y., Zhang, L. and Xu, W. (2008) Effect of Thermal Initiator Concentration on the Electrical Behavior of Polymer-Derived Amorphous Silicon Carbonitrides. Journal of the American Ceramic Society, 91, 3971-3975.
http://dx.doi.org/10.1111/j.1551-2916.2008.02782.x

[9]   Wang, Y., Ding, J. and Feng W. (2011) Effect of Pyrolysis Temperature on the Piezoresistivity of Polymer-Derived Ceramics. Journal of the American Ceramic Society, 94, 359-362.
http://dx.doi.org/10.1111/j.1551-2916.2010.04330.x

[10]   Riedel, R., Toma, L. and Janssen, E. (2010) Piezoresistive Effect in SiOC Ceramics for Integrated Pressure Sensors. Journal of the American Ceramic Society, 93, 920-924.
http://dx.doi.org/10.1111/j.1551-2916.2009.03496.x

[11]   Zhang, L.G., Wang, Y.S., Yun, W., Xu, W.X., Fang, D.J., Zhai, L., Lin, K.C. and An, L.N. (2008) A Silicon Car-bonitride Ceramic with Anomalously High Piezoresistivity. Journal of the American Ceramic Society, 91, 1346-1349.
http://dx.doi.org/10.1111/j.1551-2916.2008.02275.x

[12]   Terauds, K., Sanchez-Jimenez, P.E., Raj, R., Vakifahmetoglu, C. and Colombo, P. (2010) Giant Piezoresistivity of Polymer-Derived Ceramics at High Temperatures. Journal of the European Ceramic Society, 30, 2203-2207.
http://dx.doi.org/10.1016/j.jeurceramsoc.2010.02.024

[13]   Kroll, P. (2005) Modeling the “Free Carbon” Phase in Amorphous Silicon Oxycarbide. Journal of Non-Crystalline Solids, 351, 1121-1126.
http://dx.doi.org/10.1016/j.jnoncrysol.2005.01.010

[14]   Kroll, P. (2005) Modelling Polymer-Derived Ceramics. Journal of the European Ceramic Society, 25, 163-174.
http://dx.doi.org/10.1016/j.jeurceramsoc.2004.07.012

[15]   Colombo, P., Mera, G., Riedel, R. and Soraru, G.D. (2010) Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics. Journal of the American Ceramic Society, 93, 1805-1837.
http://dx.doi.org/10.1111/j.1551-2916.2010.03876.x

[16]   Colombo, P., Riedel, R., Sorarù, G.D. and Kleebe, H.J. (2010) Polymer Derived Ceramics: From Nano-Structure to Applications. DEStech Publications, Lancaster.

[17]   Nghiem, Q.D., Kim, D. and Kim, D.P. (2007) Synthesis of Inorganic-Organic Diblock Copolymers as a Precursor of Ordered Mesoporous SiCN Ceramic. Advanced Materials, 19, 2351-2354.
http://dx.doi.org/10.1002/adma.200602348

[18]   Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R. and Poschl, U. (2005) Raman Microspectroscopy of Soot and Related Carbonaceous Materials: Spectral Analysis and Structural Information. Carbon, 43, 1731-1742.
http://dx.doi.org/10.1016/j.carbon.2005.02.018

[19]   Ferreira, E.H.M., Moutinho, M.V.O., Stavale, F., Lucchese, M.M., Capaz, R.B., Achete, C.A. and Jorio, A. (2010) Evolution of the Raman Spectra from Single-, Few-, and Many-Layer Graphene with Increasing Disorder. Physical Review B, 82, Article ID: 125429.
http://dx.doi.org/10.1103/PhysRevB.82.125429

[20]   Ferrari, C. and Robertson, J. (2006) Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 97, Article ID: 187401.
http://dx.doi.org/10.1103/PhysRevLett.97.187401

[21]   Viana, G.A., Lacerda, R.G., Freire Jr., F.L. and Marques, F.C. (2008) ESR Investigation of Graphite-Like Amorphous Carbon Films Revealing Itinerant States as the Ones Responsible for the Signal Original. Journal of Non-Crystalline Solids, 354, 2135-2137.
http://dx.doi.org/10.1016/j.jnoncrysol.2007.10.063

[22]   Salvetat, J.P., Bonard, J.M., Forro, L., Beuneu, F. and IHuillier, C. (1999) Modification of Multiwall Carbon Nano-tubes by Electron Irradiation: An ESR Study. Physical Review B, 59, 5945.
http://dx.doi.org/10.1103/PhysRevB.59.5945

[23]   Trassl, S., Motz, G., Rossler, E. and Ziegler, G. (2002) Characterization of the Free-Carbon Phase in Precursor-Derived Si-C-N Ceramics: I, Spectroscopic Methods. Journal of the American Ceramic Society, 85, 239-244.
http://dx.doi.org/10.1111/j.1151-2916.2002.tb00072.x

[24]   Prasad, B.L.V., Sato, H., Enoki, T., Hishiyama, Y., Kaburagi, Y., Rao, A.M., Eklund, P.C., Oshida, K. and Endo, M. (2000) Heat-Treatment Effect on the Nanosized Graphite π-Electron System during Diamond to Graphite Conversion. Physical Review B, 62, Article ID: 11209.
http://dx.doi.org/10.1103/PhysRevB.62.11209

[25]   Breton, Y., Verstraete, M., Fleurier, R., Cacciaguerra, T., Charlier, J.C., Thomann, A.L. and Salvetat, J.P. (2004) Anomalous ESR Behavior of Carbon Nanofilaments Grown from Palladium Seeds. Carbon, 42, 1049-1052.
http://dx.doi.org/10.1016/j.carbon.2003.12.011

[26]   Chen, Y.H., Yang, F.Q. and An, L. (2013) On Electric Conduction of Amorphous Silicon Carbonitride Derived from a Polymeric Precursor. Applied Physics Letters, 102, Article ID: 231902.
http://dx.doi.org/10.1063/1.4809825

[27]   Corte, F.G.D., Rao, S., Nigro, M.A., Suriano, F. and Summonte, C. (2008) Electro-Optically Induced Absorption in Alpha-Si:H/Alpha-SiCN Waveguiding Multistacks. Optics Express, 16, 7540-7550.
http://dx.doi.org/10.1364/OE.16.007540

[28]   Wang, Y.S., Jiang, T., Zhang, L.G. and An, L. (2009) Optical Absorption in Polymer-Derived Amorphous Silicon Oxycarbonitrides. Journal of the American Ceramic Society, 92, 3111-3113.
http://dx.doi.org/10.1111/j.1551-2916.2009.03333.x

[29]   Sadigh, B., Erhart, P., Berg, D.A., Trave, A., Schwegler, E. and Bude, J. (2011) First-Principles Calculations of the Urbach Tail in the Optical Absorption Spectra of Silica Glass. Physical Review Letters, 106, Article ID: 027401.
http://dx.doi.org/10.1103/PhysRevLett.106.027401

 
 
Top