[1] Vija, L., Farge, D., Gautier, J., Vexiau, P. and Dumitrache, C. (2008) Mesenchymal Stem Cells: Stem Cell Therapy Perspectives for Type 1 Diabetes. Diabetes & Metabolism, 2015, 85-93.
[2] Nakaya, Y. and Sheng, G.J. (2013) EMT in Developmental Morphogenesis. Cancer Letters, 341, 9-15.
http://dx.doi.org/10.1016/j.canlet.2013.02.037
[3] Kalluri, R. and Weinberg, R.A. (2009) The Basics of Epithelial-Mesenchymal Transition. Journal of Clinical Investigation, 119, 1420-1428.
http://dx.doi.org/10.1172/JCI39104
[4] Wang, Z., Li, Y., Ahmad, A., Azmi, A., Kong, D. and Banerjee, S. (2010) Targeting miRNAs Involved in Cancer Stem Cell and EMT Regulation: An Emerging Concept in Overcoming Drug Resistance. Drug Resistance Updates, 13, 109-118.
http://dx.doi.org/10.1016/j.drup.2010.07.001
[5] Ivanova, T., Zouridis, H., Wu, Y., Cheng, L., Tan, I. and Gopalakrishnan, V. (2012) Integrated Epigenomics Identifies BMP4 as a Modulator of Cisplatin Sensitivity in Gastric Cancer. Gut, 62, 22-33.
[6] Neureiter, D. (2012) Epigenetic Control of Epithelial-Mesenchymal-Transition in Human Cancer (Review). Molecular and Clinical Oncology, 2, 3-11.
http://dx.doi.org/10.3892/mco.2012.28
[7] Liu, X. and Fan, D. (2015) The Epithelial-Mesenchymal Transition and Cancer Stem Cells: Functional and Mechanistic Links. Current Pharmaceutical Design, 21, 1279-1291.
http://dx.doi.org/10.2174/1381612821666141211115611
[8] Peinado, H., Olmeda, D. and Cano, A. (2007) Snail, Zeb and bHLH Factors in Tumour Progression: An Alliance against the Epithelial Phenotype? Nature Reviews Cancer Nat Rev Cancer, 7, 415-428.
[9] Yang, J. and Weinberg, R. (2008) Epithelial-Mesenchymal Transition: At the Crossroads of Development and Tumor Metastasis. Developmental Cell, 14, 818-829.
http://dx.doi.org/10.1016/j.devcel.2008.05.009
[10] Kurrey, N., Jalgaonkar, S., Joglekar, A., Ghanate, A., Chaskar, P., Doiphode, R. and Bapat, S. (2009) Snail and Slug Mediate Radioresistance and Chemoresistance by Antagonizing p53-Mediated Apoptosis and Acquiring a Stem-Like Phenotype in Ovarian Cancer Cells. Stem Cells, 27, 2059-2068.
http://dx.doi.org/10.1002/stem.154
[11] Vlahopoulos, S., Logotheti, S., Mikas, D., Giarika, A., Gorgoulis, V., et al. (2008) The Role of ATF-2 in Oncogenesis. BioEssays, 30, 314-327.
http://dx.doi.org/10.1002/bies.20734
[12] Huber, M., Beug, H. and Wirth, T. (2004) Epithelial-Mesenchymal Transition: NF-κB Takes Center Stage. Cell Cycle, 3, 1477-1480.
http://dx.doi.org/10.4161/cc.3.12.1280
[13] Katoh, Y. and Katoh, M. (2008) Hedgehog Signaling, Epithelial-to-Mesenchymal Transition and miRNA (Review). International Journal of Molecular Medicine, 22, 271-275.
[14] Fuxe, J. and Karlsson, M. (2012) TGF-β-Induced Epithelial-Mesenchymal Transition: A Link between Cancer and Inflammation. Seminars in Cancer Biology, 22, 455-461.
http://dx.doi.org/10.1016/j.semcancer.2012.05.004
[15] Zhang, J.Y., Tian, X.J., Zhang, H., Teng, Y., Li, R.Y., Bai, F., Elankumaran, S. and Xing, J.H. (2014) TGF-β-Induced Epithelial-to-Mesenchymal Transition Proceeds through Stepwise Activation of Multiple Feedback Loops. Science Signaling, 7, ra91.
http://dx.doi.org/10.1126/scisignal.2005304
[16] Cui, S.Y., Wang, R. and Chen, L.B. (2013) MicroRNAs: Key Players of Taxane Resistance and Their Therapeutic Potential in Human Cancers. Journal of Cellular and Molecular Medicine, 17, 1207-1217.
http://dx.doi.org/10.1111/jcmm.12131
[17] Lee, J.G. and Kay, E.P. (2006) FGF-2-Mediated Signal Transduction during Endothelial Mesenchymal Transformation in Corneal Endothelial Cells. Experimental Eye Research, 83, 1309-1316.
http://dx.doi.org/10.1016/j.exer.2006.04.007
[18] Herfs, M., Hubert, P., Suarez-Carmona, M., Reschner, A., Saussez, S., Berx, G., Savagner, P., Boniver, J. and Delvenne, P. (2010) Regulation of p63 Isoforms by Snail and Slug Transcription Factors in Human Squamous Cell Carcinoma. The American Journal of Pathology, 176, 1941-1949.
http://dx.doi.org/10.2353/ajpath.2010.090804
[19] Chakrabarti, R., Hwang, J., Blanco, M., Wei, Y., Lukacisin, M., et al. (2012) Elf5 Inhibits the Epithelial-Mesenchymal Transition in Mammary Gland Development and Breast Cancer Metastasis by Transcriptionally Repressing Snail2. Nature Cell Biology, 14, 1212-1222.
http://dx.doi.org/10.1038/ncb2607
[20] Savagner, P. (2010) The Epithelial-Mesenchymal Transition (EMT) Phenomenon. Annals of Oncology, 21, Vii89-Vii92.
http://dx.doi.org/10.1093/annonc/mdq292
[21] Savagner, P., Yamada, K.M. and Thiery, J.P. (1997) The Zinc-Finger Protein Slug Causes Desmosome Dissociation, an Initial and Necessary Step for Growth Factor-Induced Epithelial-Mesenchymal Transition. The Journal of Cell Biology, 137, 1403-1419.
http://dx.doi.org/10.1083/jcb.137.6.1403
[22] Lindsay, J., Mcdade, S., Pickard, A., Mccloskey, K. and Mccance, D. (2010) Role of ΔNp63γ in Epithelial to Mesenchymal Transition. Journal of Biological Chemistry, 286, 3915-3924.
http://dx.doi.org/10.1074/jbc.M110.162511
[23] Boldrup, L., Coates, P., Gu, X. and Nylander, K. (2007) ΔNp63 Isoforms Regulate CD44 and Keratins 4, 6, 14 and 19 in Squamous Cell Carcinoma of Head and Neck. The Journal of Pathology, 213, 384-391.
http://dx.doi.org/10.1002/path.2237
[24] Firdous, A., Sharmila, G., Balakrishnan, S., Rajasingh, P., Suganya, S., et al. (2014) Quercetin, a Natural Dietary Flavonoid, Acts as a Chemopreventive Agent against Prostate Cancer in an in Vivo Model by Inhibiting the EGFR Signaling Pathway. Food & Function, 5, 2632-2645.
http://dx.doi.org/10.1039/C4FO00255E
[25] Kang, Y.B., He, W., Tulley, S., Gupta, G.P., Serganova, I., Chen, C.-R., Manova-Todorova, K., Blasberg, R., Gerald, W.L. and Massagué, J. (2005) Breast Cancer Bone Metastasis Mediated by the Smad Tumor Suppressor Pathway. Proceedings of the National Academy of Sciences of the United States of America, 102, 13909-13914.
http://dx.doi.org/10.1073/pnas.0506517102
[26] Pachmann, K., Camara, O., Kavallaris, A., Krauspe, S., Malarski, N., Gajda, M., et al. (2008) Monitoring the Response of Circulating Epithelial Tumor Cells to Adjuvant Chemotherapy in Breast Cancer Allows Detection of Patients at Risk of Early Relapse. Journal of Clinical Oncology, 26, 1208-1215.
http://dx.doi.org/10.1200/JCO.2007.13.6523
[27] Chang, C.-J., Chao, C.-H., Xia, W.Y., Yang, J.-Y., Xiong, Y., Li, C.-W., Yu, W.-H., Rehman, S.K., Hsu, J.L., Lee, H.-H., Liu, M., Chen, C.-T., Yu, D.H. and Hung, M.-C. (2011) P53 Regulates Epithelial-Mesenchymal Transition and Stem Cell Properties through Modulating miRNAs. Nature Cell Biology, 13, 317-323.
http://dx.doi.org/10.1038/ncb2401
[28] Lu, M., Jolly, M., Levine, H., Onuchic, J. and Ben-Jacob, E. (2013) MicroRNA-Based Regulation of Epithelial-Hybrid-Mesenchymal Fate Determination. Proceedings of the National Academy of Sciences of the United States of America, 110, 18144-18149.
http://dx.doi.org/10.1073/pnas.1318192110
[29] Craene, B. and Berx, G. (2013) Regulatory Networks Defining EMT during Cancer Initiation and Progression. Nature Reviews Cancer, 13, 97-110.
http://dx.doi.org/10.1038/nrc3447
[30] Grange, C., Collino, F., Tapparo, M. and Camussi, G. (2014) Oncogenic Micro-RNAs and Renal Cell Carcinoma. Frontiers in Oncology, 4, 49.
http://dx.doi.org/10.3389/fonc.2014.00049
[31] Huangyang, P.W. and Shang, Y.F. (2013) Epigenetic Regulation of Epithelial to Mesenchymal Transition. Current Cancer Drug Targets, 13, 973-985.
http://dx.doi.org/10.2174/15680096113136660103
[32] Tian, X.J., Zhang, H. and Xing, J.H. (2013) Coupled Reversible and Irreversible Bistable Switches Underlying TGFβ-Induced Epithelial to Mesenchymal Transition. Biophysical Journal, 105, 1079-1089.
http://dx.doi.org/10.1016/j.bpj.2013.07.011
[33] Wang, Y. and Shang, Y.F. (2013) Epigenetic Control of Epithelial-to-Mesenchymal Transition and Cancer Metastasis. Experimental Cell Research, 319, 160-169.
http://dx.doi.org/10.1016/j.yexcr.2012.07.019
[34] Micalizzi, D., Farabaugh, S.M. and Ford, H.L. (2010) Epithelial-Mesenchymal Transition in Cancer: Parallels between Normal Development and Tumor Progression. Journal of Mammary Gland Biology and Neoplasia, 15, 117-134.
http://dx.doi.org/10.1007/s10911-010-9178-9
[35] Chang, Y.C., Chen, P.N., Chu, S.C., Lin, C.Y., Kuo, W.H., et al. (2012) Black Tea Polyphenols Reverse Epithelial-to-Mesenchymal Transition and Suppress Cancer Invasion and Proteases in Human Oral Cancer Cells. Journal of Agricultural and Food Chemistry, 60, 8395-8403.
http://dx.doi.org/10.1021/jf302223g
[36] Lin, C.H., Shen, Y.A., Hung, P.H., Yu, Y.B. and Chen, Y.J. (2012) Epigallocathechin Gallate, Polyphenol Present in Green Tea, Inhibits Stem-Like Characteristics and Epithelial-Mesenchymal Transition in Nasopharyngeal Cancer Cell Lines. BMC Complementary and Alternative Medicine, 12, 201.
http://dx.doi.org/10.1186/1472-6882-12-201
[37] Belguise, K., Guo, S., Yang, S., Rogers, A., Seldin, D., et al. (2007) Green Tea Polyphenols Reverse Cooperation between c-Rel and CK2 That Induces the Aryl Hydrocarbon Receptor, Slug, and an Invasive Phenotype. Cancer Research, 67, 11742-11750.
http://dx.doi.org/10.1158/0008-5472.CAN-07-2730
[38] Tang, S.N., Singh, C., Nall, D., Meeker, D., Shankar, S., et al. (2010) The Dietary Bioflavonoid Quercetin Synergizes with Epigallocathechin Gallate (EGCG) to Inhibit Prostate Cancer Stem Cell Characteristics, Invasion, Migration and Epithelial-Mesenchymal Transition. Journal of Molecular Signaling, 5, 14.
http://dx.doi.org/10.1186/1750-2187-5-14
[39] Lu, Q., Ji, X.J., Zhou, Y.X., Yao, X.Q., Liu, Y.Q., et al. (2015) Quercetin Inhibits the mTORC1/p70S6K Signaling-Mediated Renal Tubular Epithelial-Mesenchymal Transition and Renal Fibrosis in Diabetic Nephropathy. Pharmacological Research, 99, 237-247.
http://dx.doi.org/10.1016/j.phrs.2015.06.006
[40] Bhat, F., Sharmila, G., Balakrishnan, S., Arunkumar, R., Elumalai, P., et al. (2014) Quercetin Reverses EGF-Induced Epithelial to Mesenchymal Transition and Invasiveness in Prostate Cancer (PC-3) Cell Line via EGFR/PI3K/Akt Pathway. The Journal of Nutritional Biochemistry, 25, 1132-1139.
http://dx.doi.org/10.1016/j.jnutbio.2014.06.008
[41] Fantozzi, A., Gruber, D., Pisarsky, L., Heck, C., Kunita, A., Yilmaz, M., Meyer-Schaller, N., Cornille, K., Hopfer, U. Bentires-Alj, M. and Christofori, G. (2014) VEGF-Mediated Angiogenesis Links EMT-Induced Cancer Stemness to Tumor Initiation. Cancer Research, 74, 1566-1575.
http://dx.doi.org/10.1158/0008-5472.CAN-13-1641
[42] Liao, G., Wang, M., Ou, Y. and Zhao, Y. (2013) IGF-1-Induced Epithelial-Mesenchymal Transition in MCF-7 Cells Is Mediated by MUC1. Cellular Signalling, 26, 2131-2137.
http://dx.doi.org/10.1016/j.cellsig.2014.06.004
[43] Kumar, R., Musiyenko, A. and Barik, S. (2003) The Heat Shock Protein 90 of Plasmodium Falciparum and Antimalarial Activity of Its Inhibitor, Geldanamycin. Malaria Journal, 2, 30.
http://dx.doi.org/10.1186/1475-2875-2-30
[44] Bukhsh, M., Speyer, C., Hachem, A., Nassar, M., Assi, A. and Gorski, D. (2014) Abstract 4608: Exploring Anti-Oncogenic Properties of Riluzole in Breast Cancer. Cancer Research, 74, 4608.
http://dx.doi.org/10.1158/1538-7445.AM2014-4608
[45] Corkery, B., Crown, J., Clynes, M. and O’donovan, N. (2009) Epidermal Growth Factor Receptor as a Potential Therapeutic Target in Triple-Negative Breast Cancer. Annals of Oncology, 20, 862-867.
http://dx.doi.org/10.1093/annonc/mdn710
[46] Avan, A., Quint, K., Nicolini, F., Funel, N., Frampton, A., Maftouh, M., Pelliccioni, S., Schuurhuis, G.J., Peters, G.J. and Giovannetti, E. (2013) Enhancement of the Antiproliferative Activity of Gemcitabine by Modulation of c-Met Pathway in Pancreatic Cancer. Current Pharmaceutical Design, 19, 940-950.
http://dx.doi.org/10.2174/138161213804547312
[47] Chen, W., Wang, G.M., Liu, Y.J. and Qian, R.Z. (2007) Cancer Stem-Like Cells in Human Prostate Carcinoma Cells DU145: The Seeds of the Cell Line? Cancer Biology & Therapy, 6, 763-768.
http://dx.doi.org/10.4161/cbt.6.5.3996
[48] Grasso, S., Tristante, E., Saceda, M., Carbonell, P., Mayor-López, L., Carballo-Santana, M., Carrasco-García, E., Rocamora-Reverte, L., García-Morales, P., Carballo, F., Ferragut, J.A., Martínez-Lacaci, I. (2014) Resistance to Selumetinib (AZD6244) in Colorectal Cancer Cell Lines Is Mediated by p70S6K and RPS6 Activation. Neoplasia, 16, 845-860.
http://dx.doi.org/10.1016/j.neo.2014.08.011
[49] Honjo, S., Ajani, J., Scott, A., Chen, Q. and Skinner, H. (2014) Metformin Sensitizes Chemotherapy by Targeting Cancer Stem Cells and the mTOR Pathway in Esophageal Cancer. International Journal of Oncology, 45, 567-574.
http://dx.doi.org/10.3892/ijo.2014.2450
[50] Bocca, C., Bozzo, F., Cannito, S., Parola, M. and Miglietta, A. (2011) Celecoxib Inactivates Epithelial-Mesenchymal Transition Stimulated by Hypoxia and/or Epidermal Growth Factor in Colon Cancer Cells. Molecular Carcinogenesis, 51, 783-795.
http://dx.doi.org/10.1002/mc.20846