[1] Feynman, R.P. (1982) Simulating Physics with Computers. International Journal of Theoretical Physics, 21, 467-488.
http://dx.doi.org/10.1007/BF02650179
[2] Shor, P.W. (1994) Algorithms for Quantum Computation: Discrete Logarithm and Factoring. Proceedings of 35th Annual Symposium on Foundations of Computer Science, Santa Fe, 20-22 November 1994, 124-134.
http://dx.doi.org/10.1109/sfcs.1994.365700
[3] Grover, L.K. (1996) A Fast Quantum Mechanical Algorithm for Data Base Search. Proceedings of 28th Annual ACM Symposium on Theory of Computing, Philadelphia, 22-24 May 1996, 212-219.
[4] Simon, D. (1997) On the power of Quantum Computation. SIAM Journal on Computing, 26, 1474-1483.
[5] Ventura, D. and Martinez, T. (1999) Initializing Amplitude Distribution of a Quantum State. Foundations of Physics Letters, 12, 547-559.
http://dx.doi.org/10.1023/A:1021695125245
[6] Zak, M. (2000) Quantum Decision-Maker. Information Sciences, 128, 199-215.
http://dx.doi.org/10.1016/s0020-0255(00)00053-0
[7] Bshouty, N.H. and Jackson, J. (1995) Learning DNF over the Uniform Distribution Using a Quantum Example Oracle. Proceedings of the 8th Annual Conference on Computational Learning Theory, Santa Cruz, 5-8 July 1995, 118-127.
[8] Li, S.S. and Huang, Y.B. (2008) Entanglement of Superposition of Multistates. International Journal of Quantum Information, 6, 561-565
[9] Li, S.S., Nie, Y.Y., Hong, Z.H., Yi, X.J. and Huang, Y.B. (2008) Controlled Teleportation Using Four-Particle Cluster State. Communications in Theoretical Physics, 50, 633-640
[10] Huang, Y.B., Li, S.S. and Nie, Y.Y. (2009) Controlled Dense Coding between Multi Particles. International Journal of Theoretical Physics, 48, 95-100.
http://dx.doi.org/10.1007/s10773-008-9785-z
[11] Li, S.S. (2012) Dense Coding with Cluster State Via Local Measurements. International Journal of Theoretical Physics, 51, 724-730.
http://dx.doi.org/10.1007/s10773-011-0951-3
[12] Wang, Z.S., Wu, C., Feng, X.L., Kwek, L.C., Lai, C.H., Oh, C.H. and Vedral, V. (2007) Nonadiabatic Geometric Quantum Computation. Physical Review A, 76, Article ID: 044303. http://dx.doi.org/10.1103/PhysRevA.76.044303
[13] Wang, Z.S. (2009) Geometric Quantum Computation and Dynamical Invariant Operators. Physical Review A, 79, Article ID: 024304.
http://dx.doi.org/10.1103/PhysRevA.79.024304
[14] Narayanan, A. and Meneer, T. (2000) Quantum Artificial Neural Network Architectures and Components. Information Sciences, 128, 231-255.
http://dx.doi.org/10.1016/S0020-0255(00)00055-4
[15] Behrman, E.C., Nash, L.R., Sleck, J.E., Chandrashekhar, V.G. and Skinner, S.R. (2000) Simulations of Quantum Neural Networks. Information Sciences, 128, 257-269.
http://dx.doi.org/10.1016/s0020-0255(00)00056-6
[16] Ventura, D. and Martinez, T. (2000) Quantum Associative Memory. Information Sciences, 124, 273-296.
http://dx.doi.org/10.1016/S0020-0255(99)00101-2
[17] Ezkov, A., Nifanava, A. and Ventura, D. (2000) Quantum Associative Memory with Distributed Queries. Information Sciences, 128, 271-293.
http://dx.doi.org/10.1016/S0020-0255(00)00057-8
[18] Howell, J., Yeazell, J. and Ventura, D. (2000) Optically Simulating A Quantum Associative Memory. Physical Review A, 62, Article ID: 042303.
http://dx.doi.org/10.1103/PhysRevA.62.042303
[19] Ventura, D. and Martinez, T. (1999) Initializing the Amplitude Distribution of a Quantum State. Foundations of Physics Letters, 12, 547-559.
http://dx.doi.org/10.1023/A:1021695125245
[20] Jennewein, T., Simon, C., Weihs, G., Weinfurter, H. and Zeilinger, A. (2000) Quantum Cryptography with Entangled Photons. Physical Review Letters, 84, 4729-4732.
http://dx.doi.org/10.1103/PhysRevLett.84.4729
[21] Naik, D.S., Peterson, C.G., White, A.G., Burglund, A.J. and Kwiat, P.G. (2000) Entangled State Quantum Cryptography: Eavesdropping on the Ekert Protocol. Physical Review Letters, 84, 4733-4736.
http://dx.doi.org/10.1103/PhysRevLett.84.4733
[22] Tittel, W., Bendel, J., Zbinden, H. and Gisin, N. (2000) Quantum Cryptography Using Entangled Photons in Energy-Time Bell States. Physical Review Letters, 84, 4737-4740.
http://dx.doi.org/10.1103/PhysRevLett.84.4737
[23] Tan, H.T., Zhang, W.M. and Li, G. (2011) Non-Markovian Dynamics of an Open Quantum System with Initial System-Reservoir Correlations: A Nanocavity Coupled to a Coupled-Resonator Optical Waveguide. Physical Review A, 83, Article ID: 032102.
http://dx.doi.org/10.1103/PhysRevA.83.032102
[24] Smirne, A., Breuer, H.P., Piilo, J. and Vacchini, B. (2010) Initial Correlations in Open-Systems Dynamics: The Jaynes-Cummings Model. Physical Review A, 84, Article ID: 062114.
http://dx.doi.org/10.1103/PhysRevA.82.062114
[25] Benenti, G. and Casati, G. (2009) How Complex Is Quantum Motion? Physical Review E, 79, Article ID: 025201.
http://dx.doi.org/10.1103/PhysRevE.79.025201
[26] Hill, S. and Wooters, W.K. (1997) Entanglement of a Pair of Quantum Bits. Physical Review Letters, 78, 5022-5025.
http://dx.doi.org/10.1103/PhysRevLett.78.5022
[27] Wooters, W.K. (1998) Entanglement of Formation of an Arbitrary State of Two Qubits. Physical Review Letters, 80, 2245-2248.
http://dx.doi.org/10.1103/PhysRevLett.80.2245
[28] Monvol, C., Meekhof, D.M., King, B.E., Itano, W.M. and Wineland, D.J. (1995) Demonstration of a Fundamental Quantum Logic Gat. Physical Review Letters, 75, 4714-4718.
http://dx.doi.org/10.1103/PhysRevLett.75.4714