JMP  Vol.6 No.13 , October 2015
Collapsing Schwarzschild Interior Solution
Author(s) Rainer Burghardt
ABSTRACT
We extend the static interior Schwarzschild solution to a collapsing model by applying geometrical methods. We examine the field quantities and field equations in the comoving and non-comoving observer systems. The collapsing stellar object contracts asymptotically to its minimum extent and needs an infinitely long time to arrive at the final state. The event horizon of the exterior Schwarzschild solution is not reached or even crossed. A geometric model of ECOs (eternally collapsing objects) is presented.

Cite this paper
Burghardt, R. (2015) Collapsing Schwarzschild Interior Solution. Journal of Modern Physics, 6, 1895-1907. doi: 10.4236/jmp.2015.613195.
References
[1]   Oppenheimer, J.R. and Snyder, H. (1939) On Continued Gravitational Contraction. Physical Review, 56, 455-459.
http://dx.doi.org/10.1103/PhysRev.56.455

[2]   Burghardt, R. (2014) Spacetime Curvature. 1-480.
http://members.wavenet.at/arg/EMono.htm

[3]   Israel, W. (1958) Discontinuities in Spherically Symmetric Gravitational Fields and Shells of Radiation. Proceedings of the Royal Society of London A, 248, 404-414.
http://dx.doi.org/10.1098/rspa.1958.0252

[4]   O’Brien, S. and Synge, J.L. (1952) Jump Conditions at Discontinuities in General Relativity. Communications of the Dublin Institute for Advanced Studies, No. 9, 1-20.

[5]   Robson, E.H. (1972) Junction Condition in General Relativity Theory. Annales de l’Institut Henri Poincaré, 16, 41-50.

[6]   Bonnor, W.B. and Vickers, P.A. (1981) Junction Conditions in General Relativity. General Relativity and Gravitation, 13, 29-36.

[7]   Nariai, H. (1965) On the Boundary Conditions in General Relativity. Progress of Theoretical Physics, 34, 173-186.
http://dx.doi.org/10.1143/PTP.34.173

[8]   Lichnerowicz, A. (1955) Théories relativistes de la gravitation et de l’électromagnétisme. Masson et Cie, Paris.

[9]   Nariai, H. and Tomita, K. (1966) On the Applicability of a Dust-Like Model to a Collapsing or Anti-Collapsing Star at High Temperature. Progress of Theoretical Physics, 35, 777-785.
http://dx.doi.org/10.1143/PTP.35.777

[10]   Nariai, H. and Tomita, K. (1965) On the Problem of Gravitational Collapse. Progress of Theoretical Physics, 34, 155-172.
http://dx.doi.org/10.1143/PTP.34.155

[11]   McVittie, G.C. (1967) Gravitational Motions of Collapse or of Expansion in General Relativity. Annales de l’Institut Henri Poincaré, 6, 1-15.

[12]   McVittie, G.C. (1964) Gravitational Collapse to a Small Volume. Astrophysical Journal, 140, 401-416.
http://dx.doi.org/10.1086/147937

[13]   Weinberg, S. (1997) Gravitation and Cosmology. John Wiley & Sons, New York.

[14]   Burghardt, R. (2009) Interior Schwarzschild Solution and Free Fall. Report ARG-2009-06, 1-8.
http://arg.or.at/

[15]   Burghardt, R. (2015) Hilfedatei für “Collapsing Schwarzschild interior”. 1-15.
http://members.wavenet.at/arg/PendingPapers/HelpFile.pdf

[16]   Mitra, A. (2006) Black Holes or Eternally Collapsing Objects: A Revue of 90 Years of Misconception. Focus of Black Hole Research. Nova Science Publishers, New York, 1-97.

 
 
Top