Application of Dvoretzky’s Theorem of Measure Concentration in Physics and Cosmology

Show more

References

[1] Frolov, V.P. and Zelnikov, A. (2011) Introduction to Black Hole Physics. Oxford University Press, Oxford.

http://dx.doi.org/10.1093/acprof:oso/9780199692293.001.0001

[2] Bardeen, J.M., Carter, B. and Hawking, S.W. (1973) The Four Laws of Black Hole Mechanics. Communications in Mathematical Physics, 31, 161-170.

http://dx.doi.org/10.1007/BF01645742

[3] Bekenstein, J.D. (1980) Black-Hole Thermodynamics. Physics Today, 33, 24-31.

http://dx.doi.org/10.1063/1.2913906

[4] Meisner, C.W., Thorne, K.S. and Wheeler, J.A. (1973) Gravitation. W.H. Freeman & Company, San Francisco.

[5] Weinberg, S. (2008) Cosmology. Oxford University Press, Oxford.

[6] Susskind, L. and Lindesay, J. (2005) Black Holes, Information and the String Theory Revolution (The Holographic Universe). World Scientific, New Jersey.

[7] Susskind, L. (2008) The Black Hole War. Back Bay Books, New York.

[8] Horowitz, G.T., Ed. (2012) Black Holes in Higher Dimensions. Cambridge University Press, Cambridge, UK.

http://dx.doi.org/10.1017/CBO9781139004176

[9] Wheeler, A. (1990) Information, Physics, Quantum: The Search for Links. In: Zurek, W., Ed., Complexity Entropy and the Physics of Information, Addison-Wesley, New York, 3-18.

[10] ‘tHooft, G. (2015) G. ‘tHooft Asks a Question about General Relativity on ResearchGate, Questions and Answers. October.

https://www.researchgate.net/post/In_GR_can_we_always_choose_the_local_speed_of_light_to_be_

everywhere_smaller_that_the_coordinate_speed_of_light_Can_this_be_used_in_a_theory

[11] El Naschie, M.S. (2006) Fractal Black Holes and Information. Chaos, Solitons & Fractals, 29, 23-35.

http://dx.doi.org/10.1016/j.chaos.2005.11.079

[12] El Naschie, M.S. (2015) If Quantum “Wave” of the Universe Then Quantum “Particle” of the Universe: A Resolution of the Dark Energy Question and the Black Hole Information Paradox. International Journal of Astronomy & Astrophysics, 5, 243-247.

http://dx.doi.org/10.4236/ijaa.2015.54027

[13] El Naschie, M.S. (2015) A Resolution of the Black Hole Information Paradox via Transfinite Set Theory. World Journal of Condensed Matter Physics, 5, 249-260.

http://dx.doi.org/10.4236/wjcmp.2015.54026

[14] El Naschie, M.S. (2004) A Review of E-Infinity and the Mass Spectrum of High Energy Particle Physics. Chaos, Solitons & Fractals, 19, 209-236.

http://dx.doi.org/10.1016/S0960-0779(03)00278-9

[15] Connes, A. (1994) Noncommutative Geometry. Academic Press, San Diego.

[16] Levy, S., Ed. (1997) Flavors of Geometry. Cambridge University Press, Cambridge, UK.

[17] El Naschie, M.S. (2015) Banach Spacetime-Like Dvoretzky Volume Concentration as Cosmic Holographic Dark Energy. International Journal of High Energy Physics, 2, 13-21.

http://dx.doi.org/10.11648/j.ijhep.20150201.12

[18] El Naschie, M.S. (2015) Kerr Black Hole Geometry Leading to Dark Matter and Dark Energy via E-Infinity Theory and the Possibility of Nano Spacetime Singularity Reactor. Natural Science, 7, 210-225.

http://dx.doi.org/10.4236/ns.2015.74024

[19] El Naschie, M.S. (1997) Remarks on Super Strings, Fractal Gravity, Nagasawa’s Diffusion and Cantorian Spacetime. Chaos, Solitons & Fractals, 8, 1873-1886.

[20] El Naschie, M.S. (2014) Why E Is Not Equal mc2. Journal of Modern Physics, 5, 743-750.

http://dx.doi.org/10.4236/jmp.2014.59084