Back
 JEP  Vol.6 No.10 , October 2015
The Use of Clay as a Methane Emission Mitigating Feed Additive in Djallonké Rams
Abstract: Four groups each composed of six rams with 15 kg average body weight were submitted to one of the following diet: Panicum maximum C1 (PM), Panicum maximum C1 plus concentrate (PM_Co), Panicum m. C1 plus clay (PM_Ar ) and Panicum maximum C1 plus concentrate plus clay (PM_Co_Ar). The concentrate is composed of 90% weat bran, 9.25% cottonseed cake, 0.5% premix and 0.25 cooking salt. The clay used was a mixture of 59% smectite, 14% kaolinite and 27% quartz. The significance of treatments on variation in physico-chemical characteristics (ruminal pH and concentration of ammonia nitrogen), as well as in the rumen fermentation profile i.e. Volatile Fatty Acid concentration and in the enteric methane (CH4) production, depending on the rumen fluid collection time (at 9 o’clock and 13 o’clock), were studied using AOV. The highest ruminal pH was recorded in animals fed the mixture of Panicum plus clay, which is 7.02 ± 0.12 against 6.96 ± 0.12, 6.8 ± 0.06 and 6.69 ± 0.15, respectively in animals fed with PM, PM_Co and PM_Co_Ar. Incorporation of clay in the mixture of Panicum C1 plus concentrate had a stabilizing effect on ruminal pH. A significant decrease in the concentration of ruminal N-NH3 was recorded with PM_Ar (56.6 ± 15.2 g/ml), compared to PM (89.0 ± 18.9 g/ml). However, the ruminal N-NH3 concentration of animals fed the PM_Co diet (71.0 ± 15.1g /ml) increased in comparison to that of the PM_Co_Ar diet fed animals. Compared to the enteric methane concentration of the PM ration fed animals, the decrease of CH4 concentration was 2% - 5%, 7% - 11% and 19% - 23% respectively in the PM_Ar, the PM_Co and the PM_Co_Ar diets fed rams. These results suggest that the methane reducing effect of clay might be emphasized by the concentrate supplementation of the diet.
Cite this paper: Laibi, A. , Senou, M. , Sagbo, E. , Dahouda, M. , Ahyi, V. and Tchangbedji, G. (2015) The Use of Clay as a Methane Emission Mitigating Feed Additive in Djallonké Rams. Journal of Environmental Protection, 6, 1176-1185. doi: 10.4236/jep.2015.610105.
References

[1]   Ouachem, D., Soltane, M. and Kalli, A. (2008) Les pailles de céréales: Profil des fermentations et production de méthane. Sciences & Technologie, 27, 23-28.

[2]   Chenoweth, D.P. (1996) Environmental Impact of Methanogenesis. Environmental Monitoring and Assessment, 42, 3-18.
http://dx.doi.org/10.1007/BF00394039

[3]   Jouany, J.-P. and Thivend, P. (2008) La production de méthane d’origine digestive chez les ruminants et son impact sur le réchauffement climatique. Management & Avenir, 6, 259-274.
http://dx.doi.org/10.3917/mav.020.0259

[4]   CITEPA (2010) Inventaire des émissions de polluants atmosphériques en France. Séries sectorielles et analyses étendues. Format SECTEN, Rapport National d’Inventaire, 316.

[5]   Ouachem, D. and Ghamri, N. (2002) Effets de l’argile sur la digestibilité du foin et la croissance chez les Ovins. Revue Sciences Agronomiques et Forestières, 1.

[6]   Laibi, B.A. (2008) Caractérisation physicochimique et minéralogique de quelques échantillons d’argile du bassin sédimentaire côtier du Bénin. Mémoire de DEA, Université d’Abomey Calavi, 80.

[7]   Jaroslav, F. and Dvorak, R. (2009) Determination of Volatile Fatty Acid Content in the Rumen Liquid: Comparison of Gas Chromatographiy and Capillary Isotachophoresis. Acta Veterinaria Brno, 78, 627-633.
http://dx.doi.org/10.2754/avb200978040627

[8]   Demeyer, D.I. (1991) Quantitative Aspects of Microbial Metabolism in the Rumen and Hindgut. In: Jouany. J.P., Ed., Rumen Microbial Metabolism and Ruminant Digestion, Editions INRA Paris, 217-237.

[9]   Erfle, J.D., Boila, R.J., Teather, R.M., Mahadevan, S. and Sauer, F.D. (1982) Effect of pH on Fermentation Characteristics and Protein Degradation by Rumen Micro-Organisms in Vitro. Journal of Dairy Science, 65, 1457-1464.
http://dx.doi.org/10.3168/jds.S0022-0302(82)82368-0

[10]   Fonty, G., Jouany, J.P., Forano, E. and Gouet, P.H. (1995) Nutrition des ruminants domestiques: L’écosystème microbien du réticulo-rumen. Editions INRA, 299-348.

[11]   De Smith, S. and Demeyer, D.I. (1992) Dégradabilité in sacco: Variabilité entre animaux. Annales de Zootechnie, 41, 21-22.
http://dx.doi.org/10.1051/animres:19920107

[12]   Philippeau, C., Landry, J. and Michalet-Doreau, B. (2000) Influence of the Protein Distribution of Maize Endosperm on Ruminal Starch Degradability. Journal of the Science of Food and Agriculture, 80, 404-408.
http://dx.doi.org/10.1002/1097-0010(200002)80:3<404::AID-JSFA541>3.0.CO;2-Z

[13]   Offner, A., Chapoutot, P. and Sauvant, D. (2002) Comparaison de trois modèles du rumen sur leur aptitude à prédire la digestion des glucides pariétaux et amylacés. 9ème Rencontre Recherche Ruminants, Paris, 4-5 Décembre 2002, 336.

[14]   Ben Ahmed, H. and Dulphy, J.P. (1987) Influence de la complémentation des foins traités à l’ammoniac sur la valeur nutritive. Annales de Zootechnie, 36, 153-170.
http://dx.doi.org/10.1051/animres:19870205

[15]   Dulphy, J.P., Jamot, J., Chenost, M., Besle, J.M. and Chiofalo, V. (1992) The Influence of Urea Treatment on the Intake of Wheat Straw in Sheep. Annales de Zootechnie, 41, 169-185.
http://dx.doi.org/10.1051/animres:19920205

[16]   INRA (1978) Alimentation des ruminants. INRA Publication, Versailles, 597 p.

[17]   Sauvant, D. and Peyraud, J.L. (2010) Calculs de ration et évaluation du risque d’acidose. Inra Production Animale, 23, 333-342.

[18]   Sauvant, D., Giger-Reverdin, S. and Serment Broudiscou, L. (2011) Influences des régimes et de leur fermentation dans le rumen sur la production de méthane par les ruminants. INRA Production Animale, 24, 433-446.

[19]   Leng, R.A., Inthapanya, S. and Preston, T.R. (2012) Biochar Lowers Net Methane Production from Rumen Fluid in Vitro. Livestock Research for Rural Development, 24, Article #103.
http://www.lrrd.org/lrrd246/sang24103.htm

 
 
Top