JHEPGC  Vol.1 No.2 , October 2015
The Magnetic Field in the Stability of the Stars
ABSTRACT
The theoretical frame developed by A. S. Eddington is used in this paper in order to study the problem of internal structure and stars stability. A new hypothesis is developed that consists of assuming that at early stage of their evolution, all gaseous stars generate an intense magnetic field whose mission is to contribute to their stability. A simple methodology is shown to calculate the magnitude of the self-generated magnetic field at any point of the star, and diagrams are built for two specific cases, where the way in which this field varies from the center to the surface can be seen. Finally, the problem of the Cepheid type variables is studied obtaining an expression for the oscillation period carried out from the differential equation of the simple harmonic movement in terms of the appropriate parameters of the star.

Cite this paper
Palacios, A. (2015) The Magnetic Field in the Stability of the Stars. Journal of High Energy Physics, Gravitation and Cosmology, 1, 88-113. doi: 10.4236/jhepgc.2015.12008.
References
[1]   Fierros Palacios, A. (2003) The Sunspots. To Be Publishing.

[2]   Lane, J.H. (1870) On the Theoretical Temperature of the Sun. A. J. Sci. & Arts, 4.

[3]   Unsold, A. (1979) El Nuevo Cosmos. Siglo Veintiuno Editores, S.A. México.

[4]   Gamow, G. (1967) Una estrella llamada Sol. Espasa Calpe, S.A. Madrid.

[5]   Fierros Palacios, A. (1999) El principio tipo Hamilton en la dinámica de los fluidos. Segunda edición, McGraw-Hill, México.

[6]   Landau, L.D. and Lifshitz, E.M. (1960) Electrodynamics of Continuous Media. Addison-Wesley Publishing Co., London, England.

[7]   Jackson, J.D. (1962) Classical Electrodynamics. John Wiley & Sons Inc., New York, London.

[8]   Cowling, T.G. (1968) Magnetohidrodinámica. Editorial Alhambra, S.A., Madrid, Buenos Aires.

[9]   Fierros Palacios, A. (2006) The Hamilton Type Principle in Fluid Dynamics. Fundamentals and Applications to Magnetohydrodynamics, Thermodynamics, and Astrophysics. Springer-Verlag, Wien.

[10]   Chandrasekhar, S. (1958) An Introduction to the Study of Stellar Structure. Dover Publications, Inc., New York.

[11]   Goldstein, H. (1959) Classical Mechanics. Addison-Wesley Publishing Co., Inc., London, England.

[12]   Shwarzschild, M. (1965) Structure and Evolution of the Stars. Dover Publications, Inc., New York.

[13]   Landau, L.D. and Lifshitz, E.M. (1959) Fluid Mechanics. Addison-Wesley Publishing Co., London, England.

[14]   Werh, M.R. and Richars Jr., J.A. (1960) Physic of the Atom. Addison-Wesley Publishing Co., Inc., London, England.

[15]   Fowles, G.R. (1962) Analytical Mechanics. Holt, Rinhart and Winston, New York, Chicago, San Francisco, Toronto, London. http://dx.doi.org/10.1119/1.1941872

[16]   Rosseland, S. (1949) Pulsation Theory of Variable Stars. Clarendon Press, Oxford.

[17]   Morse, P.M. and Feshbach, H. (1953) Methods of Theoretical Physics. McGraw-Hill Book Company, New York, Toronto, London.

[18]   Babcock, H.W. and Cowling, T.G. (1953) M.N., 113, 357.

[19]   Parker, E.N. (1955) Hidromagnetic Dynamo Models. The Astrophysical Journal, 122, 293-314. http://dx.doi.org/10.1086/146087

[20]   Cowling, T.G. (1981) The Present Status of dynamo Theory. Annual Review of Astronomy and Astrophysics, 19, 115-135. http://dx.doi.org/10.1146/annurev.aa.19.090181.000555

[21]   Larmor, J. (1919) Brit. Assoc. Reports.

[22]   Cowling, T.G. (1934) Monthly Notices Roy. Astron. Soc. http://dx.doi.org/10.1093/mnras/94.1.39

[23]   Stacey, D.F. (1977) Physics of the Earth. 2nd Edition, John Wiley & Sons, New York, Santa Barbara, London, Sydney, Toronto.

 
 
Top