Back
 WJET  Vol.3 No.3 C , October 2015
Intelligent HEV Fuzzy Logic Control Strategy Based on Identification and Prediction of Drive Cycle and Driving Trend
Abstract: Real-time drive cycles and driving trends have a vital impact on fuel consumption and emissions in a vehicle. To address this issue, an original and alternative approach which incorporates the knowledge about real-time drive cycles and driving trends into fuzzy logic control strategy was proposed. A machine learning framework called MC_FRAME was established, which includes two neural networks for self-learning and making predictions. An intelligent fuzzy logic control strategy based on the MC_FRAME was then developed in a hybrid electric vehicle system, which is called FLCS_MODEL. Simulations were conducted to evaluate the FLCS_MODEL using ADVISOR. The simulation results indicated that comparing with the default controller on the drive cycle NEDC, the FLCS_MODEL saves 12.25% fuel per hundred kilometers, with the HC emissions increasing by 22.7%, the CO emissions reducing by 16.5%, the NOx emissions reducing by 37.5% and with the PM emissions reducing by 12.9%. A conclusion can be drawn that the proposed approach realizes fewer fuel consumption and less emissions.
Cite this paper: Niu, L. , Yang, H. and Zhang, Y. (2015) Intelligent HEV Fuzzy Logic Control Strategy Based on Identification and Prediction of Drive Cycle and Driving Trend. World Journal of Engineering and Technology, 3, 215-226. doi: 10.4236/wjet.2015.33C032.
References

[1]   Guo, X.J. and Zhen, W.Y. (2015) Toyota Hybrid Electrical Vehicles. Auto Review, 1, 61-63. http://www.cnki.net/KCMS/detail/detail.aspx?QueryID=4&CurRec=14&dbcode=CJFQ&dbname=CJFDLAST2015&filname=QCZH201501017&urlid=&yx=&uid=WEEvREcwSlJHSldSdnQ0THQ2bHRLYUxyeVFhcFVmTFJTbmljcDZLY1ArK3Z5R3pWbExSTUp6QmlCSzdiR0Fta3JRPT0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!&v=MTc2NzMzcVRyV00xRnJDVVJMK2ZidVp0RnlubFVMN09OQzdSWnJHNEg5VE1ybzlFWTRSOGVYMUx1eFlTN0RoMVQ

[2]   Johnson, V.H., Wipke, K.B. and Rausen, D.J. (2000) HEV Control Strategy for Real-Time Optimization of Fuel Economy and Emissions. 2000 Future Car Congress, SAE International, Arlington, 2-6 April 2000.

[3]   Ericsson, E. (2001) Independent Driving Pattern Factors and Their Influence on Fuel-Use and Exhaust Emission Factors. Transportation Research Part D: Transport and Environment, 6, 325-345. http://www.engineeringvillage.com/search/doc/abstract.url?pageType=quickSearch&searchtype=Quick&SEARCHID=88b75529M18c5M4c96M8df7Mfa32bbaf032b&DOCINDEX=1&database=1&format=quickSearchAbstractFormat&dedupResultCount=&SEARCHID=88b75529M18c5M4c96M8df7Mfa32bbaf032b http://dx.doi.org/10.1016/S1361-9209(01)00003-7

[4]   Jeon, S.-I., Jo, S.-T., Park, Y.-I. and Lee, J.-M. (2002) Multi-Mode Driving Control of a Parallel Hybrid Electric Vehicle Using Driving Pattern Recognition. Journal of Dynamic Systems, 124, 141-149. http://www.engineeringvillage.com/search/doc/abstract.url?pageType=quickSearch&searchtype=Quick&SEARCHID=41abe672M67c9M4bcfM92b4M6b20bd87e633&DOCINDEX=1&database=1&format=quickSearchAbstractFormat&dedupResultCount=&SEARCHID=41abe672M67c9M4bcfM92b4M6b20bd87e633 http://dx.doi.org/10.1115/1.1434264

[5]   Langari, R. and Won, J.S. (2005) Intelligent Energy Management Agent for a Parallel Hybrid Vehicle-Part I: System Architecture and Design of the Driving Situation Identification Process. IEEE Transactions on Vehicular Technology, 54, 925-934. http://www.engineeringvillage.com/search/doc/abstract.url?pageType=quickSearch&searchtype=Quick&SEARCHID=5f96548cM348aM4300Mb688M936815dad90b&DOCINDEX=1&database=1&format=quickSearchAbstractFormat&dedupResultCount=&SEARCHID=5f96548cM348aM4300Mb688M936815dad90b http://dx.doi.org/10.1109/TVT.2005.844685

[6]   Won, J.S. and Langari, R. (2005) Intelligent Energy Management Agent for a Parallel Hybrid Vehicle-Part II: Torque Distribution, Charge Sustenance Strategies, and Performance Results. IEEE Transactions on Vehicular Technology, 54, 935-953. http://www.engineeringvillage.com/search/doc/abstract.url?pageType=quickSearch&searchtype=Quick&SEARCHID=fe890fefM090fM4fd5M9200Mf60746f2aac6&DOCINDEX=1&database=1&format=quickSearchAbstractFormat&dedupResultCount=&SEARCHID=fe890fefM090fM4fd5M9200Mf60746f2aac6 http://dx.doi.org/10.1109/TVT.2005.844683

[7]   Wang, Q.N., Tang, X.Z., Wang, P.Y., Tian, L.Y. and Sun, L. (2012) Driving Intention Identification Method for Hybrid Vehicles Based on Neural Network (in Chinese). Transactions of the Chinese Society of Agricultural Machinery, 43, 32-36. http://www.engineeringvillage.com/search/doc/abstract.url?pageType=quickSearch&searchtype=Quick&SEARCHID=4fea91d4M32e7M4ed3Ma0c2Me99e9dd3b725&DOCINDEX=1&database=1&format=quickSearchAbstractFormat&dedupResultCount=&SEARCHID=4fea91d4M32e7M4ed3Ma0c2Me99e9dd3b725

[8]   Lv, R.Z. (2013) Control Strategy of HEV Base on the Driving Cycle and Driver Intention Recognition (Chinese). MA.SC. Thesis, Dalian Univer-sity of Technology, Dalian.

[9]   Yang, G.L. (2014) Energy Management Strategy of Plug-In Hybrid Electric Vehicle Based on the Recognition of Driving Intention and Working Condition (Chinese). Ph.D. Thesis, Chongqing University, Chongqing.

[10]   Jin, Y., Xie, Z.F., Chen, J.B. and Chen, E.Y. (2015) PHEV Power Distribution Fuzzy Logic Control Strategy Based on Prediction (in Chinese). Journal of Zhejiang University of Technology, 43, 97-102. http://www.cnki.net/KCMS/detail/detail.aspx?QueryID=18&CurRec=1&recid=&filename=ZJGD201501019&dbname=CJFDLAST2015&dbcode=CJFQ&pr=&urlid=&yx=&uid=WEEvREcwSlJHSldSdnQ0THZscFNkZ0tSczZFUk0xQTRvYmlNV21sSEkvMm9RdzFMUU5FK1ppQndINHFsREpaWlh3PT0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!&v=MDk1MDNMdXhZUzdEaDFUM3FUcldNMUZyQ1VSTCtmYnVackZpRGhVTHZOUHlmTWFyRzRIOVRNcm85RWJZUjhlWDE

[11]   Zhang, B.L., Zhang, P.P., Zhao, G., Tian, F., Xu, X.D., et al. (2010) Fuel Economy Global Optimal Control of PHEV Based on Discrete Dynamic Programming (in Chinese). Automotive Engineering, 32, 923-927. http://www.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=1&recid=&filename=QCGC201011000&dbname=CJFD2010&dbcode=CJFQ&pr=&urlid=&yx=&uid=WEEvREcwSlJHSldSdnQ0THZscFNkZ0tSczZFUk0xQTRvYmlNV21sSEkvMm9RdzFMUU5FK1ppQndINHFsREpaWlh3PT0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!&v=MDAwNDFyQ1VSTCtmYnVackZ5bmtWci9PTkM3TWJiRzRIOUhOcm85RlpJUjhlWDFMdXhZUzdEaDFUM3FUcldNMUY

[12]   Park, J., Chen, Z.H., Kiliaris, L., Kuang, M.L., Masrur, M.A., et al. (2009) Intelligent Vehicle Power Control Based on Machine Learning of Optimal Control Parameters and Prediction of Road Type and Traffic Congestion. IEEE Transactions on Vehicular Technology, 58, 4741-4756. http://www.engineeringvillage.com/search/doc/abstract.url?pageType=quickSearch&searchtype=Quick&SEARCHID=ffe464b2M0147M4507Mb382M7a0f8a1af3b0&DOCINDEX=1&database=1&format=quickSearchAbstractFormat&dedupResultCount=&SEARCHID=ffe464b2M0147M4507Mb382M7a0f8a1af3b0 http://dx.doi.org/10.1109/TVT.2009.2027710

[13]   Karl, P. and Werner, S. (Germany) (2012) Ground Vehicle Dynamics. Translator: Wu, G.Q., China Communications Press, Beijing.

[14]   Antoni, S. (Poland) (2001) Hybrid Electric Vehicles Basis. Translator: Chen, Q.Q. and Sun, F.C., Beijing Institute of Technology Press, Beijing.

[15]   Yang, S.C., Zhu, C.G., Gao, Y. and Li, J. (2011) A Research on Genetic Fuzzy Logic Control Strategy for Parallel Hybrid Vehicles. Automotive Engineering, 33, 106-111. http://www.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=2&recid=&filename=QCGC201102006&dbname=CJFD2011&dbcode=CJFQ&pr=&urlid=&yx=&uid=WEEvREcwSlJHSldSdnQ0THZscFNkZ0tSczZFUk0xQTRvYmlNV21sSEkvMm9RdzFMUU5FK1ppQndINHFsREpaWlh3PT0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!&v=MjMyODFDN01iYkc0SDlETXJZOUZZb1I4ZVgxTHV4WVM3RGgxVDNxVHJXTTFGckNVUkwrZmJ1WnJGeW5tV3JySU4

 
 
Top