ACES  Vol.5 No.4 , October 2015
Tunable Polymorphic Transformation Temperature
Abstract: Polymorphic transformation temperature of 2,2’:6’,2”-Terpyridine (terpy) has been studied. No transformation was observed for unground terpy (orthrhombic form) crystals, while the ground crystals may be transformed into monoclinic form. The transformation temperature was much lower than reported transformation temperature. In addition the transformation temperature decreased with increase of the grinding time. Factors influencing the transformation temperature of terpy were discussed.
Cite this paper: Yokota, M. , Ito, A. and Doki, N. (2015) Tunable Polymorphic Transformation Temperature. Advances in Chemical Engineering and Science, 5, 499-504. doi: 10.4236/aces.2015.54052.

[1]   Mutai, T., Satou, H. and Araki, K. (2005) Reproducible On-Off Switching of Solid-State Luminescence by Controlling Molecular Packing through Heat-Mode Interconversion. Nature Materials, 4, 685-687.

[2]   Bessel, C.A., See, R.F., Jameson, D.L., Churchill, M. and Takeuchi, K.J. (1992) Structural Considerations of Terdentate Ligands: Crystal Structures of 2,2′:6′,2′-Terpyridine and 2,6-Bis(pyrazol-1-yl)pyridine. Journal of the Chemical Society, Dalton Transactions, 22, 3223-3228.

[3]   Bowes, K.F., Clark, I.P., Cole, J.M., Gourlay, M., Griffin, A.M.E., Mahon, M.F., Ooi, L., Parker, A.W., Raithby, P.R., Sparkes, H.A. and Towrie, M. (2005) A New Polymorph of Terpyridine: Variable Temperature X-Ray Diffraction Studies and Solid State Photophysical Properties. CrystEngComm, 7, 269-275.

[4]   Baraldi, C., Gamberini, M.C., Tinti, A., Palazzoli, F. and Ferioli, V. (2009) Vibrational Study of Acetazolamide Polymorphism. Journal of Molecular Structure, 918, 88-96.

[5]   Kanata, T., Yoshikawa, T. and Kubota, K. (1987) Grain-Size Effects on Dielectric Phase Transition of BaTiO3 Ceramics. Solid State Communications, 62, 765-767.