[1] Testai, E., Buratti, F.M. and Consiglio, E.D. (2010) Chlorpyrifos. In: Krieger, R.I., Doull, J., van Hemmen, J.J., Hodgson, E., Maibach, H.I., Ritter, L., Ross, J. and Slikker, W., Eds., Handbook of Pesticide Toxicology, Vol. 2, Elsevier, Burlington, 1505-1526.
http://dx.doi.org/10.1016/b978-0-12-374367-1.00070-7
[2] Nunes, B. (2011) The Use of Cholinesterases in Ecotoxicology. Reviews of Environmental Contamination and Toxicology, 212, 29-59.
http://dx.doi.org/10.1007/978-1-4419-8453-1_2
[3] Wang, C., Lu, G. and Cui, J. (2012) Responses of AChE and GST Activities to Insecticide Coexposure in Carassius auratus. Environmental Toxicology, 27, 50-57.
http://dx.doi.org/10.1002/tox.20612
[4] Ferrari, A., Lascano, C., Pechen de D’Angelo, A.M. and Venturino, A. (2011) Effects of Azinphos Methyl and Carbaryl on Rhinella arenarum Larvae Esterases and Antioxidant Enzymes. Comparative Biochemistry Physiology C and Toxicological Pharmacology, 153, 34-39.
http://dx.doi.org/10.1016/j.cbpc.2010.08.003
[5] Netpae, T., Phalaraksh, C. and Wongkham, W. (2012) Antioxidant Enzyme Activities and DNA Damage as Biomarker of Copper Effect on Corbicula fluminea. Electronic Journal of Biology, 8, 19-23.
[6] Company, R., Serafim, A., Bebianno, M.J., Cosson, R., Shillito, B. and Fiala-Médioni, A. (2004) Effect of Cadmium, Copper and Mercury on Antioxidant Enzyme Activities and Lipid Peroxidation in the Gills of the Hydrothermal Vent Mussel Bathymodiolus azoricus. Marine Environmental Research, 58, 377-381.
http://dx.doi.org/10.1016/j.marenvres.2004.03.083
[7] Guidi, P., Frenzilli, G., Benedetti, M., Bernardeshi, M., Falleni, A., Fattorini, D., Reooli, F., Scarcelli, V. and Nigro, M. (2010) Antioxidant, Genotoxic and Lysosomal Biomarkers in the Freshwater Bivalve (Uni pictorum) Transplanted in a Metal Polluted River Basin. Aquatic Toxicology, 100, 75-83.
http://dx.doi.org/10.1016/j.aquatox.2010.07.009
[8] Bianco, K., Yusseppone, M.S., Otero, S., Luquet, C., Rios de Molina, M.C. and Kristoff, G. (2013) Cholinesterase and Neurotoxicity as Highly Sensitive Biomarkers for an Arganophos-phate Insecticide in a Freshwater Gastropod (Chilina gibbosa) with Low Sensitivity Carboxylesterases. Aquatic Toxicology, 26-35, 144-145.
http://dx.doi.org/10.1016/j.aquatox.2013.09.025
[9] Naik, Y.S. and Hasler, J.A. (2002) An Economical Method for the Maintenance of Schistosome Life-Cycle Using Outdoor Facilities. Discovery Innovation, 14, 221-224.
[10] Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) Protein Measurement with Folin Phenol Reagent. Journal of Biological Chemistry, 193, 265-275.
[11] Sun, Y., Larry, W.O. and Ying, L. (1988) A Simple Method for Clinical Assay of Superoxide Dismutase. Clinical Chemistry, 34, 497-500.
[12] Claiborne, A. (1989) Catalase Activity. In: Greeenwald, A.R., Ed., Handbook of Methods for Methods for Oxygen Radical Research, CRC Press Inc., Boca Raton, 283-284.
[13] Flohe, L. and Gunzler, W.A. (1984) Assays of Glutathione Peroxidase. Methods in Enzymology, 105, 114-121.
http://dx.doi.org/10.1016/S0076-6879(84)05015-1
[14] Habig, W.H., Pabst, M.J. and Jakoby, W.B. (1974) Glutathione S-Transferases. Journal of Biological Chemistry, 349, 7130-7139.
[15] Lind, C., Cadenas, E., Hochstein, P. and Ernster, L. (1990) DT Diaphorase: Purification, Properties and Function. Methods in Enzymology, 186, 287-301.
http://dx.doi.org/10.1016/0076-6879(90)86122-C
[16] Pimentel, D. and Burgess, M. (2012) Small Amounts of Pesticides Reaching Target Insects. Environment Development and Sustainability Journal, 14, 1-2. http://dx.doi.org/10.1007/s10668-011-9325-5
[17] Patra, R.C., Rautray, A.K. and Swarup, D. (2011) Oxidative Stress in Lead and Cadmium Toxicity and Its Amelioration. Veterinary Medicine International Journal, 2011, Article ID: 457327.
http://dx.doi.org/10.4061/2011/457327
[18] Radwan, M.A., El-Gendy, K.S. and Gad, A.F. (2010) Oxidative Stress Biomarkers in the Digestive Gland of Theba pisana Exposed to Heavy Metals. Archives of Environmental Contamination Toxicology, 58, 828-835.
http://dx.doi.org/10.1007/s00244-009-9380-1
[19] Rajkumar, J.S.I. and Milton, M.C.J. (2011) Biochemical Changes Induced by Cadmium, Copper, Lead and Zinc Exposure to Perna Viridis under Long Term Toxicity Test. International Journal of Pharmacology and Biosciences, 2.
[20] Nowakowska, A., Laciak, M. and Capula, M. (2011) Organ Profile of the Antioxidant Defense System and Accumulation of Metals in Helix aspersa Snails. Polish Journal of Environmental Studies, 21, 1369-1375.
[21] Alhifi, M.A., Khan, M.Z. and Gholem V.S. (2005) Effect of Dimethoate 30% EC on Antioxidant Enzymes in Chick Embryo Brain, Liver and Heart. International Medical Journal, 4.
[22] El-Gendy, K.S., Radwan, M.A. and Gad, A.F. (2009) In Vivo Evaluation of Oxidative Stress Biomarkers in the Land Snail, Theba pisana Exposed to Copper-Based Pesticides. Chemosphere, 77, 339-344.
http://dx.doi.org/10.1016/j.chemosphere.2009.07.015
[23] El-Shenawy, N. and Amaal, M. (2012) Using En-zymatic and Nonenzyamatic Antioxidant Defense Systems of the Land Snail Eobonia vermiculata as Biomarkers of Terrestrial Heavy Metal Pollution. Ecotoxicology and Environmental Safety, 84, 347-354.
http://dx.doi.org/10.1016/j.ecoenv.2012.08.014
[24] Verlecar, X.N., Jena, K.B. and Chainy, G.B.N. (2008) Modulation of Antioxidant Defences in Digestive Gland of Perna viridis on Mercury Exposures. Chemosphere, 71, 1977-1985.
[25] Leveelahti, L., Rytkonen, K.T., Renshaw, G.M.C. and Nikinmaa, M. (2013) Revisiting Redox-Active Antioxidant Defenses in Response to Hypoxic Challenge in Both Hypoxia-Tolerant and Hypoxia-Sensitive. Fish Species Fish Physiology and Biochemistry, 40, 183-191.
http://dx.doi.org/10.1007/s10695-013-9835-1
[26] Vontas, J.G., Small, G.J. and Hemingway, J. (2001) Glutathione S-Transferases as Antioxidant Defense Agents Confer Pyrethroid Resistance in Nilaparvata lugens. Biochemical Journal, 357, 65-72.
http://dx.doi.org/10.1042/bj3570065
[27] Porte, C.S., Albaiges, M.J. and Livingstone, D.R. (1991) Responses of Mixed Function Oxygenase and Antioxidase Enzyme System of Mytilus sp. to Organic Pollution. Comparative Biochemistry and Physiology, 100C, 183-186.
[28] U.S. EPA (U.S. Environmental Protection Agency) (1999) Chlorpyrifos: HED Preliminary Risk Assessment for the Reregistration Eligibility Decision (RED) Document. Chemical No. 059101. Barcode: D260163, Case: 818975, Submission: S568580.
[29] Valavanidis, A., Vlahogianni, T., Dassenakis, M. and Scoullos, M. (2006) Molecular Biomarkers of Oxidative Stress in Aquatic Organisms in Relation to Toxic Environmental Pollutants. Ecotoxicology and Environmental Safety, 64, 178- 189.
http://dx.doi.org/10.1016/j.ecoenv.2005.03.013
[30] Salama, A.K., Khaled, A.O., Nabia, A., Saber, Salim S.A. (2005) Oxidative Stress Induced by Different Pesticides in Land Snails Helix aspersa. Pakistan Journal of Biological Sciences, 8, 92-96.
http://dx.doi.org/10.3923/pjbs.2005.92.96
[31] Leomanni, A., Schettino, T., Calisi, A., Gorbi, S., Mezzelani, M., Regoli, F. and Lionetto, M.G. (2015) Antioxidant and Oxidative Stress Related Responses in the Mediterranean Land Snail Cantareus apertus Exposed to the Carbamate Pesticide Carbaryl. Comparative Biochemistry and Physiology C, 168, 20-27.
http://dx.doi.org/10.1016/j.cbpc.2014.11.003
[32] Khalil, A.M. (2015) Toxicological Effects and Oxidative Stress Responses in Freshwater Snail Lanistes carinatus Following Exposure to Chlorpyrifos. Ecotoxicology and Environmental Safety Volume, 116, 137-142.
http://dx.doi.org/10.1016/j.ecoenv.2015.03.010
[33] Ma, J., Zhou, C., Li, Y. and Li, X. (2014) Biochemical Responses to the Toxicity of the Biocide Abamectin on the Freshwater Snail Physa acuta. Ecotoxicology and Environmental Safety, 101, 31-33.
http://dx.doi.org/10.1016/j.ecoenv.2013.12.009
[34] Kavitha, P. and Venkateswara Rao, J. (2009) Sub-Lethal Effects of Profenofos on Tissue-Specific Antioxidative Responses in a Euryhyaline Fish, Oreochromis mossambicus. Ecotoxicology and Environmental Safety, 72, 1727-1733.
http://dx.doi.org/10.1016/j.ecoenv.2009.05.010
[35] Siegel, D., Gustafson, D.L., Dehn, D.L., Han, J.Y., Boonchoong, P., Berliner, L.J. and Ross, D. (2004) NAD(P)H: Quinone Oxidoreductase 1: Role as a Superoxide Scavenger. Molecular Pharmacology, 65, 1238-1247.
http://dx.doi.org/10.1124/mol.65.5.1238